

 TradeSense™:

Functions Manual

 2012

Welcome to the powerful world of Genesis Financial Technologies and the

Trade Navigator. Since 1984 thousands of market professionals, investors,

brokerage firms, and successful traders have relied on the products and

services of Genesis Financial Technologies.

Contacting Genesis

For technical support of the Trade Navigator software program please contact:

Genesis Support

Technical Support

Email: Support@TradeNavigator.com

Phone: 719.884.0245

Hours: 6AM - 7PM MTT

Sales Support

Email: Sales@TradeNavigator.com

Toll-Free: 800.808.3282

Phone: 719.884.0244

Hours: 8AM - 5PM MT T

Mailing Address

Genesis Financial Technologies Inc

4775 Centennial Blvd, Suite 105

Colorado Springs, 80919

Training Support

Email: Training@TradeNavigator.com

Hours: 8AM - 5PM MT T

Billing Support

Email: Billing@TradeNavigator.com

Phone: 719.884.0266 Fax:

719.260.6113

Hours: 8AM - 5PM MT T

Disclaimer:
Each function, and formula, in this manual is attributed as best as possible. There are some items that were

developed by, or for, third party educators for public release. In some cases the educator in question is no

longer associated with Genesis Financial Technologies, and has asked that their name be removed. In those

cases, the developer of the function, or the idea that function is based upon, has been changed to Educator in

order to acknowledge the third party nature of the design or development.

How to Use this Manual:

 2

Below each function name you will find three sub-sections. The main section being the actual name of the

function, as well as its definition. Following is a list of each of the three sub-headers that you will find.

Function:

This is what the actual function will look like when referenced. For quick reference all inputs that the

function requires are listed within the parenthesis.

Inputs:

This section will define each input that the function depends on. When using TradeSense, most functions

require parameters in order to calculate correctly. Instead of leaving the user to wonder what these

parameters are requiring from them, we have included this section to provide a clear and consise list of the

inputs. In some cases it may also include an example for the input.

Example:

This section provides example uses for each function. Keep in mind that these are just examples and should

not be depended on in your trading strategies.

What Are Functions?

Functions are indicators, date/time functions, data functions, and mathematical calculation formulas stored

under a one word name (making it easier to reference a formula without writing it out each time you would

like to include it). We use functions to specify True/False conditions within entry/exit rules, highlight bars,

and we also use them to return number values for indicators.

In this document we will explore the Function component a little further. Following this

exploration you will find a Function Glossary, providing explanations, and common uses of all of the

available Functions.

Since Functions are such an important part of any advanced/custom charting analysis, Mechanical

System creations, and/or Filters/Scans we need to establish a solid understanding of them. Functions are the

heart of any trading language, defining certain indicators, data arrays, calendar/time conditions,

mathematical formulas, or even simple True/False conditions. Since computers do not understand spoken

or even written English, we the software developer, have pre-programmed terms that the computer will

understand in a format that they understand. This makes it easier for the user to express conditions in a

 3

market environment without having to re-type whatever is included in the function. So, we have created a

language called TradeSense™ that is based in English, providing an extensive list of pre-programmed base

Functions, allowing for the easy creation of other Functions (making use of the base Functions). Instead of

forcing the user to concentrate on, a cumbersome and most often very difficult IF/THEN type C++

programming language, we have created TradeSense™ with all of the tedious programming code done in

the background. With all this programming done in the background, it allows users to take full advantage

of the Function list, and easily express in English, conditionals or formulas as indicators, highlight bars,

and/or entry and exit rules for mechanical systems.

When creating a new Function you will see that after you write your formulas, the Verify button

will highlight. Verify is a verification process, that will look at your formula and confirm that you have it

written in the correct TradeSense™ format. If you have written it incorrectly, it will highlight the incorrect

part of the formula in Red. If it is written correctly, you will not see any Red, but it will set the formula in

Italics.

You will also notice that you have a Advanced Settings box that you can check. Once this box has

an "X" in it, the Function Editor will add a third tab called Advanced. On this tab you can specify what this

Function is designed for, Charting, Filters/Scans, or System Testing.

After you verify a Function, you can Save it, by clicking the Save button at the top and entering a

name for your new function.

Following is a comprehensive list of the TradeSense™ functions, including expanded explanations,

as well as examples on their common uses.

Operators:

Operators allow users to separate functions, as well as relate them together. By using these operators, it will

allow you to input more than one condition into criteria/rules in both the Trade Navigator Gold and our

mechanical system back-testing software Trade Navigator Platinum.

Ex: IF Close > Open.1 And MovingAvg (Close, 18) > MovingAvg (Close, 40)

In the example above we are using a “>” sign which is a very commonly used operator within our

TradeSense™ language. Also, we used “And” to add another condition to our rule. Following is a list of

operators that are available to use within the softwares.

>

This is used when you want one function to be greater than the function following the operator.

>=

This is used when you want one function to be greater than, or at least equal to, the function on the

right side of the operator.

<

This is used when you want one function to be less than the function that follows the operator.

 4

<=

This used when you want one function to be less than, or at least equal to, to the function that

follows the operator.

<>

This is used when you do not want a function to equal the function that follows the operator.

=

This is used when you want two functions to equal one another.

+

This is used to add one or more values together.

 -

This is used to subtract one or more values from each other.

/
This is used to divide one or more values.

*

The asterick sign allows you to multiply two values.

AND This is used when you want to have two or more conditions in a criteria/rule to be true before

any action takes place. (Ex: IF Close > Open.1 AND Open.1 < Open)

OF This operator is used to link functions with specific data. For example: Close Of GC < Close Of

TQ, or ADX (7) Of GC > 60

OR This is used when you want one, of a number of conditions, to be true before an action takes place.

(Ex: IF Monday OR Thursday)

NOT This is usually used in conjunction with the “AND” operator to specify that you do not want a

function to be true. (Ex: IF Monday AND NOT Inside Day)

Function Categories:

When exploring Functions, or when creating new Functions, you will run into questions concerning the type

of Categories different Functions fall under (see illustration below). We have separated each Function into

one of eight different Categories. Below you will find a list of nine Categories you have to choose from

(including the *Reserved Category) when sorting your Function list, or creating a new Function.

*The Reserved category is an advanced category that users will not be able to designate within new

Functions. Please see the Reserved explanation below for further info.

 5

BarsAgo – This category is for Functions that return either the number of “barsago” or a specific bar in a

day.

Calendar – This category is for Functions that reference components of a calendar, such as months, years,

and/or trading days.

Data – This category is for Functions that either return a value in a data file for a given security, or are used

to reference data in a text file or spread sheet.

Indicator – This category is for Functions that carry the characteristics of an indicator (for example: ADX

(7), will return a value and can be plotted on a chart), or Highlight bars (that return True/False or Boolean

arrays).

 6

Math – This category is for Functions that carry through mathematical formulas, returning the results of the

equation. The Math category uses mathematical equations as the basis for the Function formula.

Misc. – This category is for Functions that utilize combinations of Functions or were never assigned a

specific category.

Price – This category is used for Functions that return price values for a given security (open, high, low,

close), or prices that are not yet determined, such as Next bar values. Commodity contract specifications,

such as Tick Move, and Tick Value will also fall under this Price category.

Trade – This category is used for Functions that are considered trade related (for example: Entry Signal,

Traded Today). These functions will not show up on the Function tab of the Traders Toolbox.

Reserved – This category is used internally for Functions that are used within specific rules, or other

functions. These functions will not be seen on the Functions menu in the Traders Toolbox, but will show

up in the TradeSense™ menu when creating a rule or function.

Abs

This Math function was designed to return the absolute value of a number. The absolute value of a negative

number is its positive equivalent.

Function:

Abs (Number)

Inputs:

Number – This is the number that you wish the Abs function to return the absolute value of. Any

expression or statement that returns a number value can be used here.

Example:

If you want the Absolute Value of the spread Abs (Spread (ProGo Proffesional (14),

difference between the ProGo Proffesional’s and ProGo Public(14))

ProGo Public.

 7

April

This Calendar function is used to return True if the current price bar is in the month of April, and False if it

is not in the month of April. It was intended for use within mechanical system rules, Filter Criteria/Scans

and/or custom functions.

Function:

April

Inputs:

None

Example:

Trading signal to occur in April and Close is IF April and Close > Close.1 greater

than the previous bar’s Close.

August

This Calendar function is used to return True if the current price bar is in the month of August, otherwise

this function will return False. It was intended for use within mechanical system rules, Filter Criteria/Scans

and/or custom functions.

Function:

August

Inputs:

None

 8

Example:

Trading signal to occur in August and the Close IF August and Close > Close.1 is

greater than the previous days Close.

Average Entry Price

This Price function was designed to average all of the entry prices of the current position, and return the

average entry price for the current position. This function is mainly used in rule creation in mechanical

systems.

Function:

Average Entry Price

Inputs:

None

Example:

Average Entry Price is greater than the most IF Average Entry Price > Entry Price recent Entry Price.

BarOfDay

This Calendar function was designed to return the number of bars into the day for the current bar. It will

return “1” for the first bar of the day, “2” for the second bar of the day, etc. This function is most

commonly used within intraday strategy rules designating the bar of the day for the current bar without

having to specify the actual time for the current bar.
Function:

BarOfDay

Inputs:

None

 9

Example:

Trading signal that will place a trade on the IF BarOfDay = 1 and Open < Close second bar

of the day, only if the open is less than the close.

Bars Ago Ignoring Inside Bars

This BarsAgo function is used to return the actual number of bars back it takes to find the specified number

of non-inside bars (NumberofNonInsideBars). For example, if you want to find how many bars it takes to

find 3 non-inside bars, the number returned may be 4, or it may be 14, it simply depends on if there are

numerous inside bars.

Function:

BarsAgoIgnoringInsideBars (NumberofNonInsideBar)

Inputs:

NumberofNonInsideBars – This is the number of non-inside bars the function will find and return the

number of bars that it took to find the specified amount of non-inside bars.

Example:

In this example we to

BarsAgoIgnoringInsideBars (10) <=15 to find 10 non-inside bars within 15 bars.

 10

Bars In Day
 This Indicator function is used to return the number of bars in a specific trading day (specified in the

DaysAgo input). This function is used when you would like to find certain values (in intraday data) a

specified amount trading days ago.

Function:

Bars In Day (Days Ago)

Inputs:

Days Ago – This is the number of trading days ago you are specifying for the calculation of Bars in Day

function. This number should be expressed as a positive whole number counting back from the current bar.

This number must be greater than 0.

Example:

Highest high in Highest (High, BarsInDay (6)). FirstBarOfDay (5) the intraday data file 6

days ago.

Bars Left In Day

This Calendar function was designed to return the number of bars after the current bar left in the current

trading day. It will return a zero if it is the last bar of the day. This function is most commonly used within

intraday strategy stops or end-of-day exit rules.

Function:

Bars Left In Day

Inputs:

None

Example:

IF Bars Left In Day = 3

We would like to exit a Long position

when there are two bars left in the day. THEN Sell 1 contract

 Next Bar Open

 11

Bars Since

This BarsAgo function was designed to return the number of bars it has been since the specified Occurrence

of the Condition, within a specified number of bars (The Last N Bars). It is most commonly used within

mechanical system rules, as well as Filter Criteria/Scans, charting indicators and custom functions. Its use

provides users with an easy way to reference price, and/or indicator values for certain days in which the

specified Condition is True or otherwise stated.

Function:

Bars Since (Condition, Occurrence, The Last N Bars)

Inputs:

Condition – This input is the pattern and/or market move that we are looking for. The Bars Since function

returns the number of bars it has been since the specified Occurrence of this input (Condition).

Occurrence – This input is the actual Occurrence of the Condition we need to find. To designate the most

recent occurrence or last time that the Condition happened use the number “1”. For all other preceding

Occurrences use numbers that are greater than “1”. For example: When “2” is used for this input, the Bars

Since function will return the number of bars it has been since the second to last time the Condition took

place.

The Last N Bars – This input represents the total number of bars that Bars Since uses to find the specified

Occurrence of the Condition. In the example below, you see that the “Last N Bars” input is set to 160,

meaning that the Bars Since function will use 160 bars (from the current bar back) to find the number of

bars it has been since the specified Occurrence of the Condition.

Example:

In this example, we would like Bars Since (ADX (7) > 50 And Close > MovingAvg

the 7 bar ADX value to be greater (Close, 18) , 1, 160) <=10

than 50 and the closing price to be greater than

the 18 bar simple

moving average of the closes. OR Since

the Bars Since function will

return the “number of bars since”

our Conditions, notice that we have Bars Since (ADX (7) > 50 And Close > MovingAvg

added a “<= 10” following the function. (Close, 18), 1, 160) = True Now,

instead of returning a number value, the “<= 10” will force the Bars Since function to return True (if in

fact our condition happened within the last 10 bars of data, otherwise it will return False).

Since we have created a True/False return,

instead of a number return, we can easily use

this formula for Filter Criteria/Scan,

highlight bars, and/or the conditional

statement in mechanical system rules.

 12

Bars Since Entry

This BarsAgo function was designed to return the number of bars since the entry into the current trade

(calculation does not factor in the current bar). The Bars Since Entry function is most commonly used

within exit rules for mechanical systems. This function allows users to define the number of bars it has

been since the bar of entry.

Function:

Bars Since Entry

Inputs:

None

Example:

Exit the position IF Bars Since Entry >= Delay when

the Bars Since your Entry

is greater than or equal to a Delay value. THEN

 Sell at Next Bar Market on Close

Bars Since Exit

This BarsAgo function was designed to return the number of bars since the most recent exit (calculation

does not factor in the current bar). The Bars Since Exit function is commonly used for entry rules within

mechanical strategies. This function allows users to specify the number of bars since the last exit.

Function:

Bars Since Exit

Inputs:

None

Example:

 IF Bars Since Exit > 3

Enter a position, when

the bars since the last exit is greater than 3. THEN

 Buy at Next Bar Market on Close

 13

Bars Since Last Entry

This BarsAgo function was designed to return the number of bars since the most recent entry into the

current position. Most commonly used within exit rules when pyramiding is being used. This function will

return the number of bars since the last entry of the most recent position.

Function:

Bars Since Last Entry

Inputs:

None

Example:

 IF Bars Since Last Entry >= 3

Exit rule when

the bars since the last entry is greater than 3. THEN

 Sell at Next Bar Market on Close

Bearish Divergence

This Misc function was designed to return True when Bearish Divergence is detected between the Price

(open, high, low, or close) and the indicator (Osc). A bearish market is defined as a market that is trending

downward for a long period of time. So, looking for Bearish Divergence (divergence being the key word)

between the price and an indicator (Osc), the price must be making higher highs, and the indicator (Osc)

must be making lower highs. Basically, it is when the indicator is failing to match the new highs of the

price. Many traders see this as a market top, and may look deeper for a sell signal.

Function:

Bearish Divergence (Price, Osc, Strength)

Inputs:

Price – This is the price that you would like to be making higher highs, detecting Bearish Divergence when

compared to the Osc function. For example, Open, High, Low or Close are the most commonly used Price

inputs.

Osc – This is the indicator that you would like to be making lower highs, detecting Bearish Divergence

when compared to the Price function.

Strength – This parameter designates the length of the Bearish Divergence. Looking for Bearish

Divergence for 10 days, the Strength parameter would be set to 10.

Example:

 14

Current Bearish Divergence Bearish Divergence (Close, MACD (Close, 12,26),12)

between the Close, and the 12/26

MACD indicator for the last 12 bars.

Bonds

This Data function returns the closing value for the pit traded 30 Year T-Bonds (TQ). It was designed for

use within mechanical systems, providing users the ability to cross reference the Bond market. It can also

be referenced within other functions as well as Filter Criteria/Scans.

Function:

Bonds

Inputs:

None

Example:

Bonds yesterday Bonds.1 > Bonds.2

closed higher than they did two days ago.

Bullish Divergence

This Misc function was designed to return True when Bullish Divergence is detected between the Price

(Open, High, Low or Close), and the indicator (Osc). A bull market is defined as a market that has been

trending up for a long period of time. So, when looking for Bullish Divergence between the price and an

indicator, the price must be making lower lows, and the indicator must be making higher lows. Basically, it

is when the indicator fails to match the new lows of the price. Many traders see this as a market bottom and

will look deeper for a buy signal.
Function:

Bullish Divergence (Price, Osc, Strength)

Inputs:

Price - This is the Price that must be making lower lows when compared to the Osc. For example, Open,

High, Low or Close are the most commonly used Price inputs.

Osc - This is the indicator that must be making higher lows failing to match the new lows of the Price.

Strength - This parameter designates the length of the Bullish Divergence. Looking for Bullish Divergence

for 10 days, the Strength parameter would be set to 10.

Example:

 15

Current Bullish Divergence Bullish Divergence (Close, MACD (Close, 12,26),12)

between the Close, and the 12/26

MACD indicator for the last 12 bars.

Close

This Price function returns the closing price of either Market 1 in your mechanical systems Data tab, or the

closing price of a user specified data set (i.e. Close of GC). Within system rules users may specify a

separate market by entering an unrecognized input, such as, Close of JOE. The system will recognize

“JOE” as a data set (because JOE was inputted after the “Of” operator), and add it to the data tab of the

System Editor. When using Close within indicators, the closing price of the charted security is used.

Function:

Close

Inputs:

None

Example:

S&P futures closed Close of SP > Close of GC higher

than the close of the

Gold market.

Consecutive

This Misc function returns the number of consecutive Conditions from the current bar back, to the

beginning of the data. Most commonly used within Filter Criteria/Scans, Highlight bars, and/or in rule

conditions, specifying that a certain number of conditions have taken place consecutively. In order for this

function to be used within Filter Criteria, Highlight bars, and Entry/Exit rules, it must be followed by an

operator and the expected value, making it a True/False statement (please see the example below).

Function:

Consecutive (Condition)

Inputs:

Condition – This input is the actual Condition (i.e. open is greater than open yesterday), that has occurred

consecutively.

Example:

Five consecutive down closes for either Consecutive (Close < Close.1) > 5

 16

Highlight bars, Entry/Exit rules or a

Filter Criteria/Scan.

Cosine

This Math function returns the cosine of the specified Number. Inputs are represented in Radians. This

function was designed simply to perform the cosine operation, and may not necessarily be used by the

common user. Cosine is most commonly used internally, but is also provided as a common math function.

Function:

Cosine

Inputs:

None

Example:

Cosine is designed to perform the basic cosine operation.

CRB

This Data function returns the closing price for the CRB index futures contract (CR). CRB provides the

user with an easy way to cross reference the closing price of the Commodity Research Bureau futures

contract (CR).

Function:

CRB

Inputs:

None

Example:

 17

CRB yesterday closed higher CRB .1 > CRB than

the close of CRB today.

Crosses Above

This Misc function was designed to indicate whether the first input has (Crossing Value) crossed above the

second input (Value being Crossed), by returning a True value. Otherwise this function will return a False

value. The formula for the Crosses Above function is as follows: Crossing Value > Value Being Crossed

and Not (Crossing Value > Value Being Crossed).1

*Please note, that if the two inputs do not return values that are bounded by the same ranges then they may

never cross each other. For example, a Stochastic %K indicator will never cross above/below the closing

price of a security because, Stochastic %K is a bounded oscillating indicator that always returns values

between 0 and 100. Remember that a securities price is unbounded, meaning that they are not expected to

return any certain value.

Function:

Crosses Above (Crossing Value, Value Being Crossed)

Inputs:

Crossing Value – This input is the function that is crossing above the Value Being Crossed. It can be

anything from a standard Stochastic indicator to a price function such as an opening price value.

Value Being Crossed – This input is the function that is being crossed by the Crossing Value. It can be

anything from a standard Stochastic indicator to a price function such as an opening price value.

Example:

The current close has crossed above Crosses Above (Close, MovingAvg (Close, 18)

the 18 bar moving average of the closes.

 18

Crosses Below

This Misc function was designed to indicate whether the first input (Crossing Value) has crossed below the

second input (Value Being Crossed), by returning True. The formula for this function is as follows:

Crossing Value < Value Being Crossed and Not (Crossing Value < Value Being Crossed).1

*Please note, that if the two inputs do not return values that are bounded by the same ranges then they may

never cross each other. For example, a Stochastic %K indicator will never cross above/below the closing

price of a security because, Stochastic %K is a bounded Oscillating indicator that always returns values

between 0 and 100. Remember that a securities price is unbounded, meaning that they are not expected to

return any certain value.

Function:

Crosses Below (Crossing Value, Value Being Crossed)

Inputs:

Crossing Value – This input is the function that is crossing below the Value Being Crossed. This input can

be anything from a standard Stochastic indicator to a price function such as the Open.

Value Being Crossed – This input is the function that is being crossed by the Crossing Value. This input

can be anything from a standard Stochastic indicator to a price function such as an opening price value.

Example:

The 18 bar Moving Average Crosses Below (MovingAvg (Close, 18), Close)

of the closes has crossed below the

Close.

DayOfMonth

This Calendar function returns the day of the month in number format. For example, if today is

Wednesday the 2nd of April, this function will return 2. You can also specify the day of the month that you

wish (forcing a True/False return) by using the DayOfMonth function combined with the equal (=) operator

followed by the day of the month number (see example below).

Function:

DayOfMonth

 19

Inputs:

None

Example:

New Function that Highlights DayOfMonth = 3 the

3rd of each month on a chart.

Condition to enter a trade next bar, IF DayOfMonth = 3 if

today is the 3rd of the month.

DayOfWeek

This Calendar function returns the day of the week as a number (1 – 5). For example, if it is Tuesday, this

function will return 2. You can also specify the day of the week you want (forcing a True/False return) by

using the DayOfWeek function combined with the equal (=) operator followed by the day of the week

number (see example below).

Function:

DayOfWeek

Inputs:

None

Example:

New Function that highlights price DayOfWeek = 3 and Lower (Close, 2) bars

when it is Wednesday and the close is greater than the close 2 bars

before.

December

This Calendar function returns True if the current bar is in December. Otherwise, this function will return a

False value. The December function is mostly used within Entry/Exit rule conditions to limit trading to just

days that are in December.

Function:

 20

December

Inputs:

None

Example:

Entry rule that enters a position IF December and Lower (Bonds,10)

when the current bar is in December,

 and Bonds closed (current bar) lower

than they did 10 bars ago.

Dollars To Price

This Price function converts the specified dollar amount (Dollar Amount), into the equivilant price move.

For example a $500 dollar move in the 30 year T-Bonds (TQ) will be converted to .50. Most commonly

used within Entry/Exit rules specifying stop or limit prices, based on a dollar amount (such as Stop Loss or

Profit Target rules). The example Long Exit rule below, shows that if the close yesterday was less than the

close today, the strategy will exit the long position on a Limit (if the price gets up to a specified price), at

the entry price plus $1500. Since many price functions return the actual value of the security (such as Entry

Price, Close, etc.), we can not simply add $1500 to them (Entry Price + $1500), the value returned would

not be appropriate. Dollar amounts must be converted to price moves in order to be added, subtracted, etc.

from a securities price.

Function:

Dollars To Price (Dollar Amount)

Inputs:

Dollar Amount – This is the specific dollar amount to be converted to a price move for the given security.

Example:

An exit rule that liquidates a long position IF Close > Close.1

on a Limit at the Entry Price plus $1500, when

the current bars close is greater than the previous

 bars close. THEN Long Exit on a Limit

Entry Price + Dollars To Price (1500)

 21

Down Range

This Indicator function returns True if a bar has a lower low, and a lower high than the previous bar. The

Down Range function returns False otherwise. Designed to automatically identify Down Range bars within

Entry/Exit rules, Filter Criteria/Scans, and/or Charting (indicators/highlight bars). In order for a bar to be

considered a Down Range bar it must meet the following condition: Low < Low.1 and High < High.1

Function:

Down Range

Inputs:

None

Example:

Close 1 bar ago is less than Close 2 bars ago Close.1 < Close.2 and Down Range

and the current bar is a Down Range bar.

This example formula can be used as a Highlight bar, Filter

Criteria, and/or Entry/Exit rule.

Entry Date

This Reserved function returns the entry date of a specified trade. The Entry Date function is mostly used

within Entry/Exit rules when back-testing mechanical strategies.

*The Entry Date function was not designed for use within Filter criteria/Scans, Indicators, Highlight bars, or

Custom Functions.

Function:

Entry Date

Inputs:

None

Example:

A rule that liquidates a long position IF Close < MovingAvg (Close, 18) and when the

current close is less than the 18 bar Entry Date

moving average of the close, and the entry date

 22

fell on a Monday. THEN Long Exit

 At Market

Entry DateTime

This Reserved function returns the date and time of the most recent entry into the current position. The

Entry DateTime function was designed for use within Entry/Exit rules of intraday strategies. It allows users

to compare the date and time of an entry with other date/time related functions, such as Last ExitDate.

Function:

Entry DateTime

Inputs:

None

Entry Price

This Price function returns the price at which the current trade was entered. Entry Price was designed for

use within Exit rules that use Stop or Limit orders (stop losses, profit target rules). This function provides

an easy way to reference the price at which the current position was entered. The prices that are returned

are for the security being used for back-testing (Market1). Entry Price may be used in the conditional

Entry/Exit statement, and/or in the Stop or Limit order price.

Function:

Entry Price

Inputs:

None

Example:

Example use in Stop order price: IF True Sell when current

price is $1500 less than the entry price.

 THEN Sell on a Stop

 Entry Price – Dollars To Price (1500)

 23

Example use within Exit Condition: IF Close > Entry Price + Dollars To Price (500)

Sell at Market price when the current close is $500 above the entry price.

THEN Sell at MARKET

Entry Time

This Reserved function was designed to return the time of the entry into the current trade (assuming you are

currently in a position).

Function:

Entry Time

Inputs:

None

 24

Exit DateTime

This Reserved function returns the date and time of the most recent exit. The Exit DateTime function was

designed for use within Entry/Exit rules of intraday strategies. It allows users to compare the date and time

of an exit with other date/time related functions, such as Last EntryDate.

Function:

Exit DateTime

Inputs:

None

Exit Price

This Trade function returns the price at which the last position was exited at. It is most commonly used in

entry rules, such as Stop and Reverse orders. Exit Price was designed for use within Entry/Exit rules that

use Stop or Limit orders (stop losses, profit target rules). This function provides an easy way to reference

the price at which the last position was liquidated. The prices that are returned are for the security being

used for back-testing (Market1). Exit Price may be used in the conditional Entry/Exit statement, and/or in

the Stop or Limit order price.

Function:

Exit Price

Inputs:

None

Example:

Last exit price is ExitPrice < Close less

than the current close.

 25

Exit Profit

This Trade function returns the profit (or loss) from the last entry to the last exit. Most commonly used to

analyze the trade profit of the last position within strategy rules. Exit Profit was designed for use within

Entry/Exit rules, and not Filter Criteria/Scans or charting indicators.

Function:

Exit Profit

Inputs:

None

Example:

Most recent exit profit Exit Profit >= 1000 is

greater than or equal to 1000.

Exit Signal

This Trade function was designed to return the rule name of the most recent exit. This function is rarely

used, but can be used within Entry rules with the following syntax: IF Exit Signal = “RuleName”

THEN…...

*Exit Signal can not be used within Filter Criteria/Scans, or charting indicators/highlight bars.

Function:

Exit Signal

Inputs:

None

 26

False

This Misc function will always return False, and was designed to be used in conjunction with other

functions such as Inside bar (see example below). This False function helps when you need a condition to

be false inside Entry/Exit rules, Filter Criteria/Scans or advanced charting indicators.

Function:

False

Inputs:

None

Example:

Exit condition where the current IF InsideBar = False bar

is not an inside bar.

 THEN Long Exit

 Market

 27

Feburary

This Calendar function returns True if the date falls within the month of Feburary. Otherwise this function

will return False. It has many uses inside Entry/Exit rules (such as seasonal pattern trading) and highlight

bars.

Function:

February

Inputs:

None

Example:

Long Entry rule to enter the market IF February and Next Bar DayOfWeek = 5

only if the current bar is in the month of

February, and the entry bar is Friday. THEN Long Entry

 NextBarOpen

FirstBarOfDay

This BarsAgo function returns the number of bars back to the first intraday bar of the specified number of

trading days ago. The FirstBarOfDay function is very useful when analyzing price, or indicator values on

the first intraday bar of a specific day. Since FirstBarOfDay returns “the number of bars ago”, it can be

used in conjunction with an “offset” operator. For example, Close.4 will return the closing price of 4 bars

ago (the period is considered the “offset” operator). FirstBarOfDay may be used in the same manner, for

example, Close.FirstBarOfDay (4) will return the first bar of the days closing price, 4 trading days ago.

This function can be used within Filter Criteria/Scans, Entry/Exit rules, and/or Customer functions.

Function:

FirstBarOfDay (Days ago)

Inputs:

Days Ago – This input is the “number of days ago”. How many bars has it been since the first intraday bar

of this (DaysAgo) trading day? Using “0” will equal today.

Example:

In this example the close Crosses Above (Close.FirstBarOfDay (2), of the first

bar of the day two trading days ago MovingAvg (Close,18).FirstBarOfDay (2)) must have

crossed above the 18 bar moving average on the first bar of the day two trading

days ago.

 28

Another example of FirstBarOfDay is a Custom High. FirstBarOfDay (0) Function

that plots the high of todays first bar.

Floor

This Math function returns the closest whole number below the specified number (for example: Floor (3.5)

will return 3.0). The Floor function may be used within Filter Criteria/Scans, Entry/Exit rules, and/or

Custom Functions.

Function:

Floor (Number)

Inputs:

Number – User specified value that the Floor function returns the whole number for. This input can be any

expression that returns an array of numbers. For example, Floor (High.4), will return the closest whole

number below the high 4 bars ago.

Example:

Formula for finding the closest whole Floor (14.395) number

just under 14.395.

Fractional Part

This Math function returns the fractional part of the specified Number (for example, FractionalPart (3.5)

will return .5). The Fractional Part function can be used within Filter Criteria/Scans, Entry/Exit rules,

and/or Custom Functions.

Function:

Fractional Part (Number)

Inputs:

Number – User specified value that the Fractional Part function returns the fractional part of. This input can

be any expression that returns an array of numbers.

 29

Example:

In this example, multiply Close * Fractional Part (Highest (Close , 10))

the current bars close by just the Fractional part of the highest close in the last 10 bars.

Friday

This Calendar function was designed to return True if the current bar is Friday. Otherwise this function will

return false. The Friday function can be used within Filter Criteria/Scans, Entry/Exit rules, and/or Custom

Functions. Friday is most commonly used within Entry/Exit rule conditions in order to generate signals for

the next trading day.

Function:

Friday

Inputs:

None

Example:

Highlight bar example, were Close < Close.1 and Friday

all bars that are Fridays, and the current bars close is less than the previous bars close are

highlighted.

Gold

This Data function returns the most recent closing price of the Gold market (GC). It’s most common use is

cross-referencing the close of Gold within Entry/Exit rule conditions. The CRB Index, and BONDS

functions have been added as well to provide an easy way to reference other common markets.

Function:

Gold

Inputs:

None

 30

Example:

True/False statement for Gold closing lower Gold.1 > Gold than

it closed on the previous bar.

High

This Data function returns the high price for the current bar unless otherwise specified (For example:

High.2 will return the High of 2 bars ago). The High function was intended to be used in Filter

Criteria/Scans, Custom Functions, as well as Entry/Exit rules. When used within a Custom Function

formula, it defaults to the high of the security that is charted. When used in a Entry/Exit rules, it will

default to the High price of Market1 (found on the Data tab of the System Editor).
Function:

High

Inputs:

None

Example:

In this example, if the High of yesterday High.1 > MovingAvg (High,

10).1 was greater than yesterdays 10 bar Moving Average of the highs, then highlight the bars

that carry a True value for the condition.

Higher

This Misc function returns True if the specified Expression has a Higher value than the same Expression a

certain number of traded bars ago (Compared to N bars Ago). The Higher function compares only two

values, the Expressions current value and the Expressions value “N” bars ago. Higher is mostly used

within Filter Criteria/Scans, Entry/Exit rules, and/or Custom Functions.

Function:

Higher (Expression, Compared to N bars ago)

Inputs:

 31

Expression – The “value” that you would like to be higher than it was “N” bars ago. This “value” can be

anything (indicator, price, etc.) that returns a number value.

Compared to N Bars Ago – This is the comparison bar for the Expression (for example: Using a “2” will

compare the Expression to that very same Expression 2 bars ago).

Example:

In this example, if today’s High is Higher (High,2) greater

than the High two bars ago, then return True.

Highest

This Indicator function returns the Expression’s highest value within a certain period of time (or range of

bars) (also user specified; The Last N bars). The difference between Highest and Higher, is that using the

Higher function will compare the Expression to the same Expression on a certain day in the past (returning

True, if the current Expression is Higher than it was on that particular day in the past). When using the

Highest function, it will return the Highest value (Expression) in a range of past bars. You can use this

function in Entry/Exit rules, as well as Filter Criteria/Scans and Custom Functions.
Function:

Highest (Expression, The Last N bars)

Inputs:

Expression – Greatest price or indicator value within The Last N bars. The Expressions value will be

returned when using the Highest function.

The Last N bars – Number of bars (from the current bar back) that Highest compares, and returns the

greatest value.

Example:

Close today is greater than Close > Close.1 and ADX (7) >= Highest (ADX(7)

yesterdays close, and the current , 12).1

7 bar ADX is the highest it has

been in the last 12 bars.

HighestAt

This BarsAgo function was designed to return the number of bars since, a specified occurrence (i.e. most

recent occurrence, 2nd to last occurrence), of the Highest Expression, in the specified amount of bars. It is

commonly used to find the highest, most recent match, of a value (Indicator, Price function) in a specified

length of time.
Function:

 32

HighestAt (Expression, The LastN bars, UseMostRecentMatch)

Inputs:

Expression – This is the value or condition that you need to find the number of bars since, the most recent

time (UseMostRecentMatch) it was the Highest (of its own values) in the specified amount of bars

(TheLastNBars).

TheLastNBars – This is the total number of bars that the HighestAt function is using to find the number of

bars back to the highest, most recent occurrence of the Expression.

UseMostRecentMatch – This input is to designate the specific occurrence of the Highest Expression. Using

“1” will represent the most recent occurrence, and using “2” will represent the second to last occurrence.

Example:

In this example we are looking for HighestAt (ADX (7), 200, 1) <= 10

the number of bars since the most recent

occurrence of the highest ADX (7 bars) value in

200 bars to be less than 10 bars ago.

HighestHigh

This Data function was designed to return the highest high value in the last “N” bars (for filter/filter

criteria, custom indicators, or rule creation).

Function:

Highest High (The Last n Bars)

Inputs:

TheLastNBars – This input is the number of bars that you are looking for the Highest High in. For

example, if you have 50 in this input, the program will look through the last 50 bars (whether Daily,

Weekly, etc) for the HighestHigh value.

Example:

In this example we are specifying that High.1 > HighestHigh (50).1

the high value yesterday is greater than the

highest high value in the last 50 bars.

HighestHighInTrade

This Price function was designed to return the highest price that has occurred since the current position was

entered. It is intended to be used within mechanical system rules, but not Filter Criteria/Scans or other

functions.
Function:

 33

HighestHighInTrade

Inputs:

None

Example:

If you want to exit a position IF HighestHighInTrade >= EntryPrice + if

the Highest High in the current trade TickMove *.20

has been greater than or equal to your THEN entry

price plus 20% of a tick.

 At Market

Hour

This Calendar function was designed to return the current bar hour in 24 hour format. For example: 2:00

p.m. = 14. This function can be used within custom functions (such as highlight bars), as well as

mechanical system rules.

Function:

Hour

Inputs:

None

Example:

In this example we would like a Hour = 14

highlight bar to highlight all of the

2:00 p.m. bars.

IFF

This Misc function is an embedded “IF” function that works like an IF/THEN statement. If input 1

(Condition) is True, then return value of Input 2 (Value if Condition is True), otherwise return value of

Input 3 (Value if Condition is False). This function is most commonly used in the creation of other custom

functions.

 34

Function:

IFF (Condition, Value if condition is True, Value if condition is False)

Inputs:

Condition – This is the condition or statement to be evaluated, expecting the return of either Input 2 (If the

condition is True) or Input 3 (If the condition is False).

Value if Condition is True – This inputs value is returned if the Condition is in fact True. This input can be

anything from standard indicators to price functions, such as the current high price of a security.

Value if Condition is False – This inputs value is returned if the Condition is False. This input can also be

anything from standard indicators to price functions, such as the current high price of a security.

Example:

In this example, if the closing price was IFF (Close > Open, Close, Open)

greater than the opening price of the trading day, highlight

the highest price bar of the day

(on an intraday price chart). If it closed below the opening

price, highlight the lowest price bar of that day.

Inside Bar

This Data function was designed to return True if a bar did not trade higher nor lower than the previous bar.

Otherwise this function will return a False value. The highs and lows can be equal and still remain an Inside

Bar.
Function:

InsideBar

Inputs:

None

Example:

In this example, we want the closing price two bars Close.2 > Close.3 and InsideBar.1

ago to be greater than the closing price of three bars ago, and we also want the

last bar to be an inside bar.

IntegerPart

This Math function was designed to return the integer part (or whole number) of the specified Number.

For example, the IntegerPart of 3.5 is 3.
Function:

 35

IntergerPart (Number)

Inputs:

Number – This input is the number you wish the program to convert to just the integer part (or whole

number). Remember, that for the function to convert a fractional number to the integer part, this input must

be a fractional number.

Example:

In this example, we want to multiply the close Close.1* IntegerPart (MovingAvg (Close,

of yesterday by the integer part value of 18)) the

18 bar moving average of the close.

IsCommodity

This Misc function was designed to return True, if in fact the security is a future/commodity. This function

was intended to be used in the creation of Filters, Filter Criteria, and/or custom functions. It was designed

before you could specify the symbol group you wished to calculate the Filter Criteria/Scans on, making it

easier to specify that you only wanted to calculate on Commodities.

Function:

IsCommodity

Inputs:

None

Example:

In this example, we want a Filter Criteria/Scan ADX (7) >= 60 and IsCommodity

to recalculate and find all of the commodities with

a 7 bar ADX value of 60 or above.

IsUndefined

This Misc function was designed to return True if the specified Expression is a Null value (or has not

happened yet). This can be used within mechanical system rules, Filter Criteria/Scans, and/or charting

indicators.

 36

Function:

IsUndefined (Expression)

Inputs:

Expression – This input is the actual value you wish to be Null or non-existent (as of yet).

Example:

In this example, we want to exit a current long position IF BarsSinceEntry >= 5 and Isundefined

 only if the bars since your entry is greater than 5 (NextBarDayIs

(“Friday”)) and the next trading day is Friday (but next trading is yet

to be defined).

January

This Calendar function was designed to return True if the current price bar is in the month of January.

Otherwise this function will return False.

Function:

January

Inputs:

None

Example:

In this example, we want the next trading day NextBarMonth = January and Close <

to fall in the month of January Close.1

and the close today is less than the close yesterday.

July

This Calendar function was designed to return True if the current price bar is in the month of July.

Otherwise, this function will return False.

Function:

July

 37

Inputs:

None

Example:

In this example, we want the next trading day NextBarMonth = July and Close <

to fall in the month of July and the Close.1

close today is less than the close yesterday.

June

This Calendar function was designed to return True if the current price bar is in the month of June.

Otherwise, this function will return False.

Function:

June

Inputs:

None

Example:

In this example, we want the next trading day NextBarMonth = June and Close <

to fall in the month of June and the Close.1

close today is less than the close yesterday.

LastEntryDateTime

This Reserved/Trade function was designed to return the date and time of the most recent entry into the

current position. This function was only intended for use in mechanical system rules.

Function: LastEntryDateTime

 38

Inputs:

None

Example:

In this example, we want to exit the current position IF LastEntryDateTime < (BarofDay = 3) only if

the entry date and time came before the

third bar of the day (using intraday data). THEN Exit Long

 At Market

LastEntryPrice

This Reserved/Trade function was designed to return the price that the most recent entry was filled at. This

function was only intended to be used in mechanical system rules, since there would be no use for it in a

Filter Criteria/Scan or charting indicators.

Function: LastEntryPrice

Inputs:

None

Example:

In this example, we want to exit a position only If

the last entry price was less than

IF LastEntryPrice < Close.1

Yesterdays close. THEN Exit Long

 At Market

 39

LastEntryProfit

This Reserved/Trade function was designed to calculate the profit/loss from the most recent entry to the last

bar of data in the data file and return the profit/loss dollar amount. Automatically assuming you are exiting

at the closing price of the current bar, it returns the profit/loss for the complete trade. It was only intended

to be used in mechanical system rules, not Filter Criteria/Scans or custom functions.

Function: LastEntryProfit

Inputs:

None

Example:

In this example, we want to exit a trade when IF LastEntryProfit > (EntryPrice +

the entry Profit has exceeded your entry price

plus $500.

 DollarsToPrice (500))

 THEN Long Exit

 At Market

LastEntrySignal

This Reserved/Trade function was designed to return the rule name for the most recent entry into the

current position. This function was only intended to be used in mechanical systems rules, not Filter

Criteria/Scans or custom indicators.

Function: LastEntrySignal

Inputs:

None

LastBarofDay

This BarsAgo function was designed to return the number of bars since the last bar of a specified number

of trading days ago. You can also use this for charting indicators, such as Moving averages, of the number

of bars back to the last bar of the day (using a specified amount of days ago). This function was intended

to be used if the user has subscribed to Genesiss’ intraday data.

Function:

40

LastBarofDay (Days Ago)

Inputs:

Days Ago - This is the number of “Trading Days ago” you need to find the number of bars back to the last

bar of that day. Using “0” will equal today.

Example:

In this example, we want to construct a moving MovingAvg (Close, LastBarOfDay

(1)) average of the closes using the number of bars that it has been

since the last bar of yesterdays data.

Log

This Math function was designed to return the natural logarithm of a number. The Log function was

intended to be used in either mechanical system rules, Filter Criteria/Scans, charting indicators, and/or

custom functions.

Function:

Log (Number)

Inputs:

Number – This input is the particular number (or any function that returns a number value) that you need

the natural logarithm for.

Example:

In this example, we want the logarithm for Log (ADX (7).1) yesterdays 7 bar

ADX value.

Lower

This Misc function was designed to return True if the current Expressions value is lower than the same

Expressions value on a certain traded bar. Otherwise this function will return False. It simply compares

two of the same values on two different traded bars. It can be used within mechanical system rules, Filter

Criteria/Scans, charting indicators, and/or custom functions.

 41

Function:

Lower(Expression, Compared to N bars Ago)

Inputs:

Expression – This is the condition that you want to be lower than the same condition “N” bars ago.

Compared to N bars Ago – This is the number of bars back to compare to.

Example:

In this example, we want the current Lower (ADX (7), 10)

7 bar ADX value to be a lower value than

it was 10 bars before.

LowestAt

This BarsAgo function was designed to return the number of bars since a specified occurrence (i.e. most

recent occurrence, 2nd to last occurrence) of the Lowest Expression in the specified amount of bars. It is

commonly used to find the most recent match of the Expression’s Lowest value (Indicator, Price function)

in the specified length of time.
Function:

LowestAt (Expression, TheLastN bars, UseMostRecentMatch)

Inputs:

Expression – This is the value or condition that we need to find the number of bars since, the specified

occurrence (UseMostRecentMatch) of its Lowest value in the specified amount of time (TheLastNBars).

TheLastNBars – This is the total number of bars that the LowestAt function will use to find, the number of

bars since the specified occurrence of its lowest value.

UseMostRecentMatch – This input is to designate the specific occurrence we are using to find the number

of bars since (occurrence). Using “1” will represent the most recent occurrence, and using “2” will

represent the second to last occurrence.

Example:

In this example, we are looking for LowestAt (ADX (7), 200, 1) <= 10

the number of bars since the most recent

occurrence of the lowest 7 bar ADX value in

the last 200 bars to be less than 10 bars ago.

42

LowestLowinTrade

This Reserved/Trade function was designed to return the lowest price (of Market 1) that has occurred since

the current position was entered (assuming there is an existing open trade). This function was only

intended to be used within mechanical system rules, since this function returns the lowest low price since a

trade was entered. It will not work within Filter Criteria/Scans, or custom functions (such as indicators or

highlight bars).

Function:

LowestLowinTrade

Inputs:

None

Example:

In this example we want IF True a

stop loss rule that stops

us out at the lowestl low price THEN Exit Long in

the last most recent trade.

 At LowestLowInTrade

March

This Calendar function is designed to True if the current price bar is in the month of March. Otherwise,

this function will return False.

Function:

March

Inputs:

None

Example:

In this example, we want to exit a long IF March and Close > Close.1 position

only if it is currently March

and the most recent closing price is less than THEN Long Exit yesterdays

closing price (assuming the most recent

close was today’s close). At Market

 43

MarketPosition

This Reserved/Trade function was designed to return the type of position (0 = None, 1 = Long, and -1 =

Short) that the current trade is.

Function: MarketPosition

Inputs:

None

Example:

In this example, we would MarketPosition = 1 or MarketPosition = 0 like our current

market postion to be a long one or none at all.

Max

This Math function was designed to compare the two specified inputs, and return the greater (or highest) of

the two values.

Function:

Max (Comparison Value 1, Comparison Value 2)

Inputs:

Comparison Value 1 – This is the first of two values to be compared.

Comparison Value 2 – This is the second of the two values to be compared.

Example:

In this example, we want the greatest value Max (Lowest (Close, 3), Close.10) < Max of

either the lowest close of the last 3 bars, or (Lowest (Close, 18), Close.30) the closing

price 10 bars ago to be less than the greatest value of either the lowest close of the last 18 bars

or the close price of 30 bars ago.

MaxPositionLoss

44

This Reserved/Trade function was designed to return the Maximum Loss (per unit) since the current trade

was entered. It was designed to be used in mechanical system rules only, not Filter Criteria/Scans, charting

indicators or custom functions.

Function:

MaxPositionLoss

Inputs:

None

Example:

In this example, we would like our MaxPositionLoss < MaxPositionProfit

maximum position profit to be greater than our maximum position

loss.

MaxPositionProfit

This Reserved/Trade function was designed to return the Maximum Profit (per unit) since the current trade

was entered. It was designed to be used in mechanical systems, not Filter Criteria/Scans, charting

indicators or custom functions.

Function:

MaxPositionProfit

Inputs:

None

Example:

In this example, we would like our MaxPositionLoss < MaxPositionProfit

maximum position profit to be greater than our maximum position

loss.

 45

 46

May

This Calendar function was designed to return True if the current bar is in the month of May. Otherwise,

this function will return a False value.

Function:

May

Inputs:

None

Example:

In this example, we want to NextBarMonth = May

specify that the next bar month is

in the month of May.

Min

This Math function was designed to compare the two inputs and return the lesser or lower value of the two.

Function:

Min (Comparison Value 1, Comparison Value 2)

Inputs:

Comparison Value 1 – This input is the first of the two values to be compared.

Comparison Value 2 – This input is the second of the two values to be compared.

Example:

In this example, we want the smallest value Min (Lowest (Close, 3), Close.10) < Min

of either the lowest close of the last 3 bars, or (Lowest (Close, 18), Close.30)

the closing price 10 bars ago to be less than the lesser value of

either the lowest close of the last 18 bars or the close price of 30 bars ago.

 47

MinMove

This Price function was designed to return the minimum value a security can move (usually it is one

increment). For example T-Bonds move 1 tick at a time. This function was designed to work only with

mechanical systems and their rules.

Function:

MinMove

Inputs:

None

Example:

In this example, we would like the IF True

to exit a position using a stop loss rule at our entry price

minus the minimum move THEN Long Exit on a Stop of the

given security (Market 1).

 Entry Price - MinMove

Minute

This Calendar function was designed to return the minute of the current bar in a standard MM format. It is

commonly used within mechanical system rules, as well as charting indicators and custom functions that

need to reference intraday data.

Function:

Minute

Inputs:

None

 48

Example:

In this example, we would like to Minute = 30

have a highlight bar that highlights all of bars on an intraday chart that have a

minute value of :30.

MinutesToTime

This Calendar function was designed to convert the minutes since midnight, to a hour/minute format

(HHMM). For example 180 minutes since midnight, this function would return 0300 (for three hours or

3:00 a.m.).

Function:

MinutesToTime (Minutes Since Midnight)

Inputs:

Minutes Since Midnight – This input is the minutes since midnight to be converted to a standard HHMM

format. In the example above, we use 180 as the Minutes Since Midnight.

MinutesPerBar

This Calendar function was designed to return the number of minutes in each bar of the data. If the data is

not in a “Minute bars” or Intraday format, then this MinutesPerBar function will return a “0” value. It was

designed to be used within mechanical system rules, Filter Criteria/Scans, as well as charting indicators and

custom functions.

Function:

MinutesPerBar

Inputs:

None

Example:

 49

In this example, if the chart is set IFF (MinutesPerBar = 60, Minute = 30, False)

to 60 minute bars, then we would = True like a highlight bar that

highlights all of the bars that have a :30. If the chart is not set to 60 minute bars, do not highlight

anything.

Monday

This Calendar function was designed to return True if the current price bar is a Monday. Otherwise this

function will return False. It can be used within mechanical system rules, as well as charting indicators and

custom functions.

Function:

Monday

Inputs:

None

Example:

In this example, we would like to IF Monday and Close > Close.1 enter

long positions only on Thursdays

when the close on Wednesday is greater than THEN Long Entry the

close on Tuesday (assuming none of the

days fall on a holiday). At Market

Month

This Calendar function was designed to return the specific month for the current or most recent bar. Each

month is in number format. For example January = 1, February = 2, etc.

Function:

 50

Month

Inputs:

None

Example:

In this example, we would like Month = 10 and StochK (14,3) >= 80 to

highlight all bars that fall in the

month of October and have a StochK value

of 80 or above.

MovingAvg CrossesAbove

This Misc function was designed to return True if the fast moving average of the closes has crossed above

the slow moving average of the closes. This function will return False if the FastMAbars has not crossed

above the SlowMAbars. The MovingAvg CrossesAbove function was intended for use in Filter

Criteria/Scans, mechanical system rules, as well as custom functions that expect a True/False return (such

as highlight bars).

Function:

MovingAvgCrossesAbove (FastMAbars, SlowMAbars)

Inputs:

FastMAbars – This input specifies the number of bars used in the average for the fast moving average

(moving average that crosses). The default is set to 0.

SlowMAbars – This input is the number of bars used in the average for the slow moving average (moving

average that is crossed). The default for this one is also 0.

Example:

In this example, we would MovingAvg CrossesAbove (7, 40)

like those price bars highlighted that correspond to the 7 bar FastMA crossing above the 40

bar SlowMA.

MovingAvg CrossesBelow

This Misc function was designed to return True if the fast moving average of the closes has crossed below

the slow moving average of the closes. This function will return False if the FastMAbars has not crossed

below the SlowMAbars. The MovingAvg CrossesBelow function was intended to be used in Filter

Criteria/Scans, mechanical system rules, as well as custom functions that expect a True/False return (such

as highlight bars).

 51

Function:

MovingAvg CrossesBelow (FastMAbars, SlowMAbars)

Inputs:

FastMAbars – This input specifies the number of bars used in the average for the fast moving average

(moving average that crosses). The default is set to 0.

SlowMAbars – This input is the number of bars used in the average for the slow moving average (moving

average that is crossed). The default for this one is also 0.

Example:

In this example, we would MovingAvg CrossesBelow (7, 40)

like those price bars highlighted that correspond to the 7 bar FastMA crossing below the

40 bar SlowMA.

NextBar BarofDay

This Calendar function was designed to return the number of bars into the current day for the next bar. For

example, for the first bar it will return a 1, and for the second bar it will return 2, etc. It was only intended

to be used within mechanical system rules.

Function:

NextBar BarofDay

Inputs:

None

Example:

In this example, we would like to IF NextBarBarofDay > 3 enter

a position only if the

entry bar is after THEN Long Entry the

3rd bar of the day.

 At Market

NextBarClose

This Price function was designed to return the closing price of the very next price bar. This particular

function was only intended for use within mechanical system rules, providing the ability to reference the

next bar close. It is most commonly used when specifying the price at which to enter or exit a position.

 52

Function:

NextBarClose

Inputs:

None

Example:

In this example, we would like IF Close > Close.1 to

exit an current position on

the next bar close only if THEN Long Exit

today’s close is greater than yesterday’s

close.

 At NextBarClose

NextBarDayIs

This Calendar function was designed to return True, if the next tradable bar is the specified day of the

week. If the next tradable bar is not the specified day of the week, the function will return False. It was

only intended to be used within mechanical system rules, providing the ability to specify the day of the

week for the next bar as part of the condition.

Function:

NextBarDayIs (WeekDayName)

Inputs:

WeekDayName – This input is the actual name of the weekday (Monday, Tuesday, etc.) that must be

specified. There is a little quirk with this input. The weekday name must be enclosed in quotation marks.

Example:

In this example, we would like IF NextBarDayIs (“Thursday”) And

to specify, as the signal for an EntryPrice < Close exit, that the

next day of the week

is Thursday. Also, we would like the THEN Long Exit current

bar to close above our Entry

Price. At Market

 53

NextBar DayOfMonth

This Calendar function was designed to return the day of the month in numeric format for the next bar.

This function was only intended for use within mechanical system rules, providing the ability to specify the

day of the month for the next bar.

Function:

NextBar DayOfMonth

Inputs:

None

Example:

In this example, we would like IF NextBar DayOfMonth <= 20

to specify, as part of the signal for an entry, that the day of

the month for the next bar is the 20th of the month or before.

NextBar DayOfWeek

This Calendar function was designed to return the day of the week number for the next bar. For example, 1

= Monday, 2 = Tuesday, etc. Just like all of the other “Next Bar” Calendar functions, this function was

only intended to be used within mechanical system rules.

Function:

NextBar DayOfWeek

Inputs:

None

Example:

In this example, we would IF NextBar DayOfWeek = 3

like the next bar to be the 3rd day of the week, as part of the condition or signal to

enter/exit a position.

 54

NextBarHigh

This Price function was designed to return the price of the next bars high. This function, like the many

other “Next Bar” functions was only intended for use within mechanical system rules. Since all orders

within system rules are “Next Bar” orders, “Next Bar” functions provide an easy way to specify a price that

has not happened yet.

Function:

NextBarHigh

Inputs:

None

Example:

In this example, we would like IF NextBarHigh > Close to

enter a short position at the

next bar’s closing price, only if THEN Short Entry the

next bar’s high value exceeds

the current bar’s closing value. At Next Bar Close

NextBarHour

This Calendar function was designed to return the hour of the next bar (in 24 hour format). For example,

2:00 p.m. = 14. This “Next Bar” Calendar function was only intended for use within mechanical system

rules. It is most commonly used as part of the condition (or signal) for entry or exit into a position.

Function:

NextBarHour

Inputs:

None

Example:

In this example, part of the IF NextBarHour >= 11

condition for entry into a position is that it must be 11:00 a.m. or after.

 55

NextBarLow

This Price function was designed to return the price of the next bars low. This function, like the many other

“Next Bar” functions was only intended for use within mechanical system rules. Since all orders within

system rules are “Next Bar” orders, “Next Bar” functions provide an easy way to specify a price that has

not happened yet.

Function:

NextBarLow

Inputs:

None

Example:

In this example, we would like IF NextBarLow > NextBarOpen to

enter a short position at the

next bar’s close value, only if THEN Short Entry

the next bar’s low value exceeds

the next bar’s opening value. At Next Bar Close

NextBarMinute

This Calendar function was designed to return the minute value of time for the next bar. This function

returns the minute value based on the data intervals of Market 1. The “NextBarMinute” function was only

intended for use within mechanical system rules, returning the minute value for the next bar of data, based

on the intraday data interval Market 1 is set to (10 Minute bars, 30 Minutes, etc).

Function:

NextBarMinute

Inputs:

None

 56

Example:

In this example, part of the IF NextBarHour = 11 And NextBarMinute = 30

condition for entry into a position is that the entry bar must be the 11:30 bar.

NextBarMonth

This Calendar function was designed to return the month value for the next bar in number format, where as

each number (1 – 12), corresponds to that particular month. For example: NextBarMonth = 3, will return

True if in fact the next bars date is in the month of March. The NextBarMonth function, just like many of

the other “Next Bar” functions, was only intended for use within mechanical system rules. It is also used

in the creation of custom functions, but this usage is rarely seen. Since this function returns the value

(expressed as a number) of the Next Bars month when used alone, it is usually followed by a math operator

(<, >, =), that is followed by the month number. This process will change the return type, from a number

value return, to a True/False return.

Function:

NextBarMonth

Inputs:

None

Example:

In this example, we would like IF NextBarMonth = 2

the very next bar to be in the month of February.

NextBarOpen

This Price function was designed to return the price of the next bars open. This function, like the many

other “Next Bar” functions was only intended for use within mechanical system rules. Since all orders

within system rules are “Next Bar” orders, “Next Bar” functions provide an easy way to specify a price that

has not happened yet.

Function:

NextBarOpen

Inputs:

 57

None

Example:

In this example, we would like IF Close > Low to

enter a short position at the

next bar’s opening price only if THEN Short Entry the

current bar’s close value exceeded

the current bar’s low value. At Next Bar Open

NextBarTime

This Calendar function was designed to return the time of the next bar as a number (HHMM). For example

930 is 9:30 a.m., and 1600 for 4:00 p.m. This function, like the many other “NextBar” functions, was only

intended for use within mechanical system rules. It is most commonly used as part of the condition or

signal, triggering a trade.

Function:

NextBarTime

Inputs:

None

Example:

In this example, we would like IF NextBarTime > 930

a trade to be triggered only if it is after 9:30 a.m.

NextBarTradingDayOfMonth

This Calendar function was designed to return the trading day of the month number for the next bar. For

example, if today is 12/31/99, this function will return a 1. This function will automatically skip holidays

and weekends. It was also only intended for use within mechanical system rules.

Function:

 58

NextBarTradingDayofMonth

Inputs:

None

Example:

In this example, we want to IF TradingDayOfMonth <> NextBarTradingDayOfMonth

place a trade on the next bar, but only if it is not the same trading day of

the month as the current bar.

NextBarTradingDayOfWeek

This Calendar function was designed to return the trading day of the week number for the next bar. For

example: Monday = 1, Tuesday = 2, Wednesday = 3, etc. This function was only intended to be used

within mechanical system rules.

Function:

NextBarTradingDayOfWeek

Inputs:

None

Example:

In this example, we would like IF NextBarTradingDayOfWeek <> 3

a trade to be triggered only if the next bar falls on any day of the week but Wednesday.

NextBarTradingDayOfYear

This Calendar function was designed to return the trading day of the year as a number for the next bar,

skipping weekends and holidays. As with many of the “Next Bar” functions, this function was only

intended to be used within mechanical system rules.

 59

Function:

NextBarTradingDayOfYear

Inputs:

None

Example:

In this example, we would like Close.2 > Close.1 and TradingDayOfYear =

a trade to be triggered only if NextBarTradingDayOfYear the next bars

TDOY is equal to the current TDOY, and the close two bars ago is greater than the close one bar

ago.

NextBarTradingDaysAfterHoliday

This Calendar function was designed to return the number of trading days that have gone by since the last

holiday, starting from the last holiday and ending at the next bar. This function, like many of the other

“Next Bar” functions, was only intended to be used within mechanical system rules. This

NextBarTradingDaysAfterHoliday function makes it easier to specify holiday trading signals.

Function:

NextBarTradingDaysAfterHoliday

Inputs:

None

Example:

In this example, we want to IF NextBarTradingDaysAfterHoliday = 1

have a signal or condition that triggers a trade the day after the most recent holiday.

NextBarTradingDaysLeftBeforeHoliday

This Calendar function was designed to return the number of trading days from the next bar to the next

holiday. This function, like many of the other “Next Bar” functions, was only intended to be used within

mechanical system rules. This NextBarTradingDaysLeftBeforeHoliday function makes it easier to specify

holiday trading signals as conditions in system rules.

 60

Function:

NextBarTradingDaysLeftBeforeHoliday

Inputs:

None

Example:

In this example, we want to IF NextBarTradingDaysLeftBeforeHoliday = 0 have

a signal or condition that

triggers an exit on close one THEN Long Exit day

before the next holiday.

 Market on Close

NextBarTradingDaysLeftInMonth

This Calendar function was designed to return the number of trading days left in the current month, starting

from and including the next bar. This will return a 1 if it is the last trading day of the month. This function,

like many of the other “Next Bar” functions, was only intended to be used within mechanical system rules.

This NextBarTradingDaysLeftInMonth function makes it easier to specify conditions that trigger trades

when there are a certain amount of trading days left in the month.

Function:

NextBarTradingDaysLeftInMonth

Inputs:

None

Example:

In this example, we would like IF NextBarTradingDaysLeftInMonth = 1

to enter a position if the next daily bar is the last trading day in the current month.

NextBarWeekDayOccurrence

This Calendar function was designed to return True if the next bar is the Nth Occurrence of the weekday

name. Otherwise this function will return False. For example, NextBarWeekDayOccurrence (“Tuesday”,

2) returns true if the next bar is the second Tuesday of the month. The NextBarWeekDayOccurrence was

 61

only intended for use within mechanical systems, but since it returns True/False it can also be used for

highlight bars.

Function:

NextBarWeekDayOccurrence (WeekDayName, Occurrence)

Inputs:

WeekDayName – This is the weekday name of the day that you are looking for. Please note that the

weekday name must be enclosed by quotation marks (Please see example below).

Occurrence – This is the number occurrence of the weekday you are looking for. If this input is negative,

the function will look from the end of the current month back. In the example below we are looking for

the last Friday of the month., so we are using “-1” as the Occurrence.

Example:

In this example, we want to NextBarWeekDayOccurrence (“Friday”, -1)

create a highlight bar that highlights the last Friday of each month.

NextBarYear

This Calendar function was designed to return the year portion of the date for the next bar. For example: If

the next bar is in the year of 1999, then this NextBarYear function will return 99. This function, like many

of the other “Next Bar” functions, was only intended to be used within mechanical system rules. This

NextBarYear function provides an easier way to specify conditions that trigger trades based on specific

calendar conditions. Since this function returns a two digit year value for the next bar, it can also be forced

to return True/False, by adding a math operator (<, >, =) followed by the specific year that the next bar

must fall in, in order to return a True value.

Function:

NextBarYear

Inputs:

None

Example:

In this example, the rule that IF NextBarYear >= 00

we would like to use is only applicable in the year 2000 or after.

November

This Calendar function was designed to return True if the current bar is in the month of November. Otherwise,

this function will return False. This function was intended to be used in mechanical system rules, Filter

Criteria/Scans, as well as some custom functions.

 62

Function:

November

Inputs:

None

Example:

In this example, we would like IF November = False

the current bar to be in any other month besides November in order to trigger a

trade for the next bar.

Occurrences

This Misc function was designed to return the number of Conditions that have happened over a specified

amount of time (The Last N Bars). The Occurrence function was intended for use within mechanical

system rules, Filter Criteria/Scans, and/or custom functions. It is most commonly used in the condition, or

formula, within rules, or custom functions in order to specify the number of times that a Condition must

have happened before an action takes place. Since this function returns a number (number of times the

Condition took place), it can also be forced to return True/False values. Please see example below for an

example of forcing a True/False return.

Function:

Occurrence (Condition, The Last N Bars)

Inputs:

Condition – This input is the actual pattern or market move that the Occurrences function locates, and then

returns the number of times it has taken place within The Last N Bars.

The Last N Bars – This input is the total amount of bars that the Occurrences function will use to locate the

number of times the Condition has taken place. If this input is set to “0”, the function will use the full

history of the data file.

Example:

In this example, we would like Occurrences (Close < Close.1, 50) >= 15

a Criteria that filters for all securities that have had 15 or more down closes within the last 50 bars

of data.

October

 63

This Calendar function was designed to return True if th e current bar is in the month of October. Otherwise,

this function will return False. This function was intended to be used in mechanical system rules, Filter

Criteria/Scans, as well as some custom functions.

Function:

October

Inputs:

None

Example:

In this example, we would like IF October and ADX (7) > 60

to enter a position in a market only if the current bar is in October, and the most recent 7

bar ADX value is greater than 60.

OutsideBar

This Indicator function was designed to return True if the current, most recent bar satisfies the conditions

for an OutsideBar. The criteria for an OutsideBar is a bar that traded both higher and lower than the

previous bar (higher high and lower low). This function can be used in mechanical system rules, Filter

Criteria/Scans, and/or charting indicators/custom functions. Its most common use is either in a highlight

bar (custom function), or in system rules, triggering a trade signal.

Function:

OutsideBar

Inputs:

None

Example:

In this example, we would like OutsideBar = True and Close > Close.1

to highlight all bars that are outside bars, as well as having a closing price that is greater than the

previous bars closing price.

 64

Power

This Math function was designed to return the result of raising the Number input by the PowerValue input.

Input 1 (Number) is raised by the power of Input 2 (PowerValue).

Function:

Power (Number, PowerValue)

Inputs:

Number – This is the number (or math operation that returns a number value) to be raised by the

PowerValue. This input requires a number or a formula that produces a number.

PowerValue – This input is the power that Input 1 (Number) is raised by. Both inputs require a number or a

number variable.

Example:

In this example, we are raising Power (Close, 3)

the current bars closing price by a power of 3.

PriceToDollars

This Math function was designed to convert a price movement of the current market symbol to a dollar

amount. This function will return the dollar value for the specified Price move. It is most commonly used

within mechanical system rules, specifying the fill price for certain trade signals.

Function:

PriceToDollars (Price)

Inputs:

Price – This input is the price movement to be converted to a dollar amount.

Example:

In this example of an IF True

action or order for next bar, we want to

Exit at our Entry THEN Long Exit Price plus

3 price moves.

 At Entry Price + PriceToDollars (3)

 65

RelativeStrengthRatio

This Indicator function is also known by the name Price Ratio, and was designed to compare the

performance of one security relative to another. It is calculated by dividing the close of the first security by

the close of the second and returns the difference as a number value. It is most commonly used within

mechanical system rules, Filter Criteria/Scans, and/or charting indicators/custom functions.

Function:

RelativeStrengthRatio (PrimaryValue, BaseValue)

Inputs:

PrimaryValue – This input is the closing price of the primary market.

BaseValue – This input is the closing price of the market that the primary is being compared to.

Example:

In this example we would like RelativeStrengthRatio (Gold, Bonds)

a custom indicator (returning a value) that plots the ratio between Gold and Bonds.

Remainder

This Math function was designed to return the remainder after dividing two numbers. For example, 9

divided by 2, is equal to 4 with a remainder of 1. Therefore this function will return only the 1. This

function was intended for use within mechanical system rules, as well as Filter Criteria/Scans.

Function:

Remainder (NumberToDivide, DivideByThisNumber)

Inputs:

NumberToDivide – This input is the numerator in the equation. In the equation 9/2, the 9 is your

NumberToDivide.

DivideByThisNumber – This input is the denominator in the equation. Divide the NumberToDivide by this

input. In the equation, 9/2, the 2 is your DivideByThisNumber input.

Example:

 66

In this example we would Remainder (Close, Close.1)*100

like to multiply the remainder of the close divided by the close yesterday, by 100.

Round

This Math function was designed to round a number (as a decimal) to either a whole number or a specified

decimal place. For example, Round (35.748) will return 36, but Round (35.748, 2) will return 35.75.

Function:

Round (Expression, NumDigits)

Inputs:

Expression – This input is the number value, or function value to be rounded to a certain NumDigits.

NumDigits – This input is used to specify how many decimal places after the decimal to round to. For

example, Round (35.748, 2). This will return 35.75, because we specified 2 decimal places after the

decimal.

Example:

In this example we would like Round (Close.1 - Close)

to round the difference between the close yesterday and the close today.

 67

Seasonal

This Indicator function was designed to be used internally in our Seasonal indicators such as, Seasonal

Trend. This internal function provides a way to specify certain values (see inputs below) that the Seasonal

Trend indicator needs in order to calculate.

Function:

Seasonal (PriceMode, Method, LookBack, StdDev)

Inputs:

Price Mode – This input is to designate the certain price, or price calculation to be used in the Seasonal

function. The following is a list of Price Modes that are available:

0 = Open 4 = Average of High and Low

1 = High 5 = Average of Open and Close

2 = Low 6 = Average of High, Low and Close

3 = Close 7 = Average of Open, High, Low and Close

Method – This input allows custom specification for the type of average used in the Seasonal functions

calculation. Following is a list of averages that are available:

1 – Simple

2 – Exponential

3 – Weighted

4 – Modified Exponential

LookBack – This input is the number of years that the Seasonal function will LookBack and use for

calculation.

StdDev – This input is the standard deviation amount above or below the average that is used in the

Seasonal function.

Example:

In this example we are creating Seasonal (4, 1, 3, 0)

a seasonal indicator using a simple average of the high and low.

 68

SecurityType

This Price function was designed to return the type of security, such as “F” for Futures, “S” for Stocks, “I”

for Indexes, or “M” for Mutual Funds. This function was only intended for use with mechanical system

rules, as well as Filter Criteria/Scans.

Function:

SecurityType

Inputs:

None

Example:

In this example we would like SecurityType = F

to add (as a condition) a criteria that will filter for just futures. *Remember

that this is just an example, there are other ways to accomplish this within a

criteria.

September

This Calendar function was designed to return True if the current price bar is in the month of September.

Otherwise this function will return False. This function was intended for use within mechanical system

rules, Filter Criteria/Scans, and/or custom functions.

Function:

September

Inputs:

None

Example:

 69

In this example, we would like IF September and ADX (7) > 60

to enter a position in a market only if the current bar is in September,

THEN Enter Long and the most recent 7 bar ADX value is

greater than 60. At Market

SessionEndTime

This Calendar function was designed to return the market ending time for the current day in a HHMM

format (Hour Hour Minute Minute). This Calendar function was only intended for use within mechanical

system rules, but can be used in highlight bar True/False formulas.

Function:

SessionEndTime

Inputs:

None

Example:

In this example we are creating IFF (Session End Time > 1400 , FirstBarOfDay (0) = True ,

a highlight bar. If the session end time False) = True is greater than 2:00 p.m., then highlight

the first bar of the day, otherwise return False.

SessionStartTime

This Calendar function was designed to return the market start time for the current day in a HHMM format

(Hour Hour Minute Minute). This Calendar function was only intended for use within mechanical system

rules, but can be used in highlight bar True/False formulas.

Function:

SessionStartTime

Inputs:

None

Example:

 70

In this example we are creating IFF (Session Start Time > 0800 , FirstBarOfDay (0) = True ,

a highlight bar. If the session start time LastBarOfDay (0) = True) = True is greater than 8:00

p.m., then highlight the first bar of the day, otherwise highlight the last bar of the day.

ShiftBars

This Reserved/Trade function was designed to shift the bars backward or forward by a specified number of

bars (Number to Shift) from the Expression’s value. This function is most commonly used within custom

functions, such as highlight bars and indicators.

Function:

ShiftBars (Expression, Number to Shift)

Inputs:

Expression – This input is the number, indicator, or custom function value that gets shifted by the Number

to Shift.

Number to Shift – This input is the actual number of bars to shift the Expressions value. Positive values for

this input will shift the bars forward, and negative values will shift the bars backwards.

Example:

In this example we would like ShiftBars (MovingAvg (Close, 7), -2)

to plot the 7 bar simple moving average shifted backward by 2 bars.

Sign

This Math function was designed to return the sign of a number. For example, it will return –1 for negative

numbers, 0 for zero, and 1 for all positive numbers.

Function:

Sign (Expression)

Inputs:

 71

Expression – This input is the number, indicator, custom function, and/or math equation that the Sign

function will use to return the sign of the value of this input.

Example:

In this example we would like Sign ((Close – Close.2)*100)

the sign function to return the sign of the close subtracted from the close 2 bars

ago, multiplied by 100.

Sine

This Math function is simply the Sine operation, returning the Sine of a Number.

Function:

Sine (Number)

Inputs:

Number – This input is the number that will be returned as the Sine of the number.

Example:

In this example we would like Sine ((Open – Close)*100)

the sine of the open subtracted from the close multiplied by 100.

SP500

This Data function was designed to return the closing price (of current bar) for the S&P 500 future contract.

Function:

SP500

Inputs:

None

Example:

 72

In this example we would like IF SP500 > Gold the

S&P 500 to have closed

greater than the close of Gold THEN Long Entry as

the condition or entry signal

in a system rule. At Market

Spread

This Indicator function was designed to compare two values (Primary Value, Base Value) and return the

difference (as a number) between them. The formula simply subtracts the two values and returns the

difference. It is most commonly used within mechanical system rules, Filter Criteria/Scans, and/or custom

functions.

Function:

Spread (Primary Value, Base Value)

Inputs:

Primary Value – This input is the first value (indicator, price, etc.) that is to be compared to the Base Value

in the Spread calculation.

Base Value – This input is the second value (indicator, price, etc.) that is to be used in the Spread

calculation.

Example:

In this example we would like Spread (Close, Open)

to create a Spread line based on the difference between the closes and opens.

SqrRoot

This Math function was designed to return the square root of the expression specified by the user. It is

most commonly used within custom functions, such as functions that return number values.

Function:

SqrRoot (Expression)

 73

Inputs:

Expression – This input is the actual number, or indicator value that is used for the SqrRoot function. The

SqrRoot function will return the square root of this input.

Example:

In this example we would like SqrRoot (ADX (7))*100

to take the square root of the most recent 7 bar ADX value and multiply the result

by 100.

Square

This Math function was created to make squaring a number easier than writing a long formula. It simply

squares the Number specified by the user and returns the result. The Number is simply multiplied by itself.

Function:

Square (Number)

Inputs:

Number – This input is the value that is squared. This input can be a number, or any other function that

returns a number value.

Example:

In this example, we would Square (Close.1)

like to square the closing price of yesterday.

StdDevsAsPercentBelow

This Math function was designed to return the percentage below a specified number of standard deviations

(NumStdDevs) from the average. A percentage returned that is less than 50 is for negative standard

deviations, and above 50 is positive standard deviations. This most commonly used within other functions,

such as standard deviation indicators.

Function:

 74

StdDevsAsPercentBelow (NumStdDevs)

Inputs:

NumStdDevs – This input is the actual number of standard deviations away from the average that will be

returned as a percentage..

Example:

In this example we would StdDevsAsPercentBelow (2)

like the percentage returned, when a standard deviation of 2 is used.

StdDevsForPercent

This Math function was designed to return the number of standard deviations away from the average for the

specified percentage (0 – 100). It will return numbers above 50 for positive percentage, and below 50 for

negative percentage. This function is most commonly used within other functions, such as, functions that

are indicators.

Function:

StdDevsForPercent (Percent)

Inputs:

Percent – This input is the percentage used to find the number of standard deviations away from the

average in the calculation of the StdDevsForPercent function.

Example:

In this example we would StdDevsForPercent (50) like

to use a 50 percent deviation.

StdDevsForValue

This Math function was designed to return the number of standard deviations that the Value is from the

average of the Expression (for a specified number of bars). This is very similar to Microsofts Excel’s

“Standardize” function. It will return a negative number if the value is below the average.

Function:

 75

StdDevsForValue (Expression, NumBars, Value)

Inputs:

Expression – This input is the price function, indicator function, or number averaged in the calculation of

the StdDevsForValue.

NumBars – This input is the number of bars that the StdDevsForValue function uses to average the

Expression.

Value – This input is the price function, or indicator function that the StdDevsForValue returns the number

of standard deviations away from the Expressions average.

Example:

In this example we would StdDevsForValue (MovingAvg (Close, 18), 3, Close) <= 2

like for the close to be deviated off of the 18 bar moving average by either 2, or less.

StopAndReverse

This Misc function was designed to allow the creation of generic stop and reverse type indicators. It is very

similar to Wells Wilder’s Parabolic indicator as well as the Volatility indicator. It will calculate a stop

value below the prices in an uptrend (during a long position), and when the prices fall below the Long Stop

value the direction is reversed and the “Stop” value is then calculated above the prices (for a short

position).

Function:

StopAndReverse (LongStopOffset, FromHighestOf, ShortStopOffset, FromLowestOf,

ReverseAtNextBarPenetration, Position, UseExtreme)

Inputs:

LongStopOffset – This input is the amount to be subtracted from the FromHighest Of value setting the stop

value for a long position.

FromHighestOf – This input is the value that the LongStopOffset is subtracted from, setting the stop value

for a long position. This input defaults to the most recent closing price.

ShortStopOffset – This input is the amount to be subtracted from the FromLowestOf value setting the stop

value for a short position.

FromLowestOf – This input is the value that the ShortStopOffset is subtracted from, setting the stop value

for a short position. This input defaults to the most recent closing price.

 76

ReverseAtNextBarPenetration – This input designates when the reverse stop value is set. When this input

is set to 0 or False, it will set the stop value (reversing the stop value) when the current bars close value

crosses the last stop value. When a 1 or True is used, it will reverse the stop value when the next bar

crosses the last stop value. This input defaults to 0 or False.

Position – This input designates which stop values are to be calculated. When this input is set to 0, the

StopAndReverse function will return values for both long and short positions. If this input is set to 1, the

StopAndReverse function will only return stop values for long positions. If this input is set to –1, the

StopAndReverse function will only return stop values for short position. This input is defaulted to 0,

displaying stop values for both long and short positions.

UseExtreme –

Example:

In this example, we would like to StopAndReverse (AvgTrueRange (7)* 3)

create a volatility indicator using the average true range multiplied 3, as the stop offset.

*Notice that only the stop offset had to

be set, the rest of the inputs are left at

their default values.

StringCompare

This Misc function was designed to allow the comparison of two values (Text 1, Text 2). If the values are

equal then the function will return True. Otherwise, this function will return False.

Function:

StringCompare (Text 1, Text 2)

Inputs:

Text 1 – This input is the first of the two comparison values. The StringCompare function will return True

if this input equals the Text 2 input.

Text 2 – This input is the second of the two comparison values. The StringCompare function will return

True if this input equals the first input, Text 1.

Example:

In this example, we would like StringCompare (Close, Open)

to compare the close with the open values and have a highlight bar highlight bars

when the close equals the open.

 77

StringContains

This Misc function was designed to identify whether String 1 is contained in String 2. If String 1 was

found in String 2, then this function will return True. Otherwise this function will return False.

Function:

StringContains (String 1, String 2)

Inputs:

String 1 – This input is the string of numbers or indicator values that the StringContains function searches

for within the value of String 2.

String 2 – This input is the string of numbers or indicator values that the StringContains function searches

in to find the value of String 1.

Example:

In this example we would like StringCompare (Open or High or Low or Close,

to know whether the open, high, MovingAvg (Close, 18).2 or low

or close values are found MovingAvg (Close, 18).1

within the 18 bar moving average or MovingAvg (Close, 18))

values 2 bars ago, 1 bar ago, or on the current bar.

SwingHigh

This Misc function was designed to return the price of the specified Occurrence of a Swing High. It uses

four inputs designating, the number of bars used, the Method used, the type of AltMode used, and the

specific Occurrence of the High Swing that it is looking for. This SwingHigh function was intended for

use within mechanical system rules, as well as Filter Criteria/Scans. It is most commonly used when

referencing the price of a certain occurrence of a SwingHigh.

Function:

SwingHigh (Strength, Method, AltMode, Occurrence)

Inputs:

Strength – This input is the number of bars that the SwingHigh function searches within in order to find the

specific Occurrence of a SwingHigh.

Method – This input allows for the specification of the type of swings that the SwingHigh function looks

for. Following is a list of available input values that can be used.

0 – Normal method that is used when the number of bars are higher/lower on both sides.

1 – Used when a bar closes below the low of the high day.

2 – Used when a bar closes below specified “X” number of consecutive closes.

3 – Used when a bar is completely below the low of the high day.

4 – Used to find any of #1-#3 conditions above.

5 – Used to find either #2 or #3.

 78

AltMode – This input allows users to specify the order in which swing points are calculated.

0 – This will not alternate highs or lows, showing all possible swing points.

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Occurrence – This input is the specific “Happening” of a high swing that the SwingHigh function is to

return the value/price for.

Example:

In this example we would High > Highest (Swing High (3, 0, 1, 1), 60).1

like the current bars high to be greater than the highest most recent swing high value in the last 60

bars.

SwingHighBar

This Misc function was designed to return the number of bars since the specified Occurrence of a

SwingHighBar. It uses four inputs designating, the number of bars used, the Method used, the type of

AltMode used, and the specific Occurrence of the High Swing that it is looking for. This SwingHighBar

function was intended for use within mechanical system rules, as well as Filter Criteria/Scans. It is most

commonly used when referencing the bars since a certain occurrence of a SwingHigh.

Function:

SwingHighBar (Strength, Method, AltMode, Occurrence)

Inputs:

Strength – This input is the number of bars that the SwingHighBar function searches within in order to find

the specific Occurrence of a high swing.

Method – This input allows for the specification of the type of swings that the SwingHighBar function

looks for. Following is a list of available input values that can be used.

0 – Normal method that is used when the number of bars are higher/lower on both sides.

1 – Used when a bar closes below the low of the high day.

2 – Used when a bar closes below specified “X” number of consecutive closes.

3 – Used when a bar is completely below the low of the high day.

4 – Used to find any of #1-#3 conditions above.

5 – Used to find either #2 or #3.

 79

AltMode – This input allows users to specify the order in which swing points are calculated.

0 – This will not alternate highs or lows, showing all possible swing points.

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Occurrence – This input is the specific “Happening” of a high swing that the SwingHighBar function is to

return the value/price for.

Example:

In this example we would BarsSince (ADX (7) < 60, 1, 60) < SwingHighBar (60, 1, 0, 1)

like the bars since the last time the 7 bar ADX value was less than 60, to be less than the bars since the last

(most recent) swing high bar.

SwingHighBarCustom

This Misc function was designed to return the number of bars since the specified occurrence of a “Custom”

swing high bar, using a customized (user specified) Expression to calculate the Swing Points. It will also

allow for Strength, AltMode, and Occurrence inputs. This function was only intended to be used within

mechanical system rules, Filter Criteria/Scans, and/or other custom functions.

Function:

SwingHighBarCustom (Expression, Strength, AltMode, Occurrence)

Inputs:

Expression – This input is the price function (or value) that the SwingHighBarCustom function uses to

calculate the swing points. It uses a default of the closing prices. This input is what makes this a “Custom”

function, allowing the ability to specify the price or indicator function that the function uses.

 Strength – This input is the number of bars that the SwingHighBarCustom function searches within in

order to find the specific Occurrence of a high swing.

AltMode – This input allows users to specify the order in which swing points are calculated.

 80

0 – This will not alternate highs or lows, showing all possible swing points.

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Occurrence – This input is the specific “Happening” of a high swing that the SwingHighBarCustom

function is to return the value/price for.

Example:

In this example we would like SwingHighBarCustom (StochK (14,3), 20, 0, 1) < 3

the bars since the last (most recent) swing high bar of the StochK, to be less than 3 in the last 20 bars.

SwingHighCustom

This Misc function was designed to return the price of the specified Occurrence of a “Custom” swing high.

It uses five inputs designating the price or indicator function used, the number of bars used, the Method

used, the type of AltMode used, and the specific Occurrence of the High Swing that it is looking for. This

SwingHighCustom function was intended for use within mechanical system rules, as well as Filter

Criteria/Scans. It is most commonly used when referencing the price of a certain occurrence of a

SwingHigh.

Function:

Swing High Custom (Expression, Strength, AltMode, Occurrence)

Inputs:

Expression – This input is the price function (or value) that the SwingHighCustom function uses to

calculate the swing points. It uses a default of the closing prices. This input is what makes this a “Custom”

function, allowing the ability to specify the price function (or value) that the function uses.

Strength – This input is the number of bars that the SwingHighCustom function searches within in order to

find the specific Occurrence of a high swing.

 81

AltMode – This input allows users to specify the order in which swing points are calculated.

0 – This will not alternate highs or lows, showing all possible swing points.

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Occurrence – This input is the specific “Happening” of a high swing that the SwingHighCustom function is

to return the value/price for.

Example:

In this example we would StochK (14,3) > SwingHighCustom (StochK (14,3), 20, 0, 1)

like the current StochK value to be greater than the last swing high value of the StochK in the last 20 bars

of data.

SwingLow

This Misc function was designed to return the actual price of the specified Occurrence of a Swing Low

point. It uses four inputs designating the number of bars used, the Method used, the type of AltMode used,

and the specific Occurrence of the low swing that it is looking for. This SwingLow function was intended

for use within mechanical system rules, as well as Filter Criteria/Scans. It is most commonly used when

referencing the price of a certain occurrence of a SwingLow.

Function:

SwingLow (Strength, Method, AltMode, Occurrence)

Inputs:

 Strength – This input is the number of bars that the SwingHigh function searches within in order to find the

specific Occurrence of a SwingHigh.

Method – This input allows for the specification of the type of swings that the SwingHigh function looks

for. Following is a list of available input values that can be used.

0 – Normal method that is used when the number of bars are higher/lower on both sides.

1 – Used when a bar closes below the low of the high day.

2 – Used when a bar closes below specified “X” number of consecutive closes.

3 – Used when a bar is completely below the low of the high day.

 82

4 – Used to find any of #1-#3 conditions above.

5 – Used to find either #2 or #3.

AltMode – This input allows users to specify the order in which swing points are calculated.

0 – This will not alternate highs or lows, showing all possible swing points.

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Occurrence – This input is the specific “Happening” of a high swing that the SwingHigh function is to

return the value/price for.

Example:

In this example we would Low > Lowest (Swing Low (3, 0, 1, 1), 60).1

like the current bars low to be less than the lowest most recent swing low value in the last 60

bars.

SwingLowBar

This function was designed to return the number of bars since the specified occurrence of a Swing Low

Bar. It uses four inputs designating the number of bars used, the Method used, the type of AltMode used,

and the specific Occurrence of the High Swing that it is looking for. This SwingLowBar function was

intended for use within mechanical system rules, as well as Filter Criteria/Scans. It is most commonly used

when referencing the bars since a certain occurrence of a SwingLow.

Function:

SwingLowBar (Strength, Method, AltMode, Occurrence)

Inputs:

Strength – This input is the number of bars that the SwingHighBar function searches within in order to find

the specific Occurrence of a high swing.

Method – This input allows for the specification of the type of swings that the SwingHighBar function

looks for. Following is a list of available input values that can be used.

0 – Normal method that is used when the number of bars are higher/lower on both sides.

1 – Used when a bar closes below the low of the high day.

2 – Used when a bar closes below specified “X” number of consecutive closes.

3 – Used when a bar is completely below the low of the high day.

4 – Used to find any of #1-#3 conditions above.

5 – Used to find either #2 or #3.

 83

AltMode – This input allows users to specify the order in which swing points are calculated.

0 – This will not alternate highs or lows, showing all possible swing points.

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Occurrence – This input is the specific “Happening” of a high swing that the SwingHighBar function is to

return the value/price for.

Example:

In this example we would BarsSince (ADX (7) > 60, 1, 60) < SwingLowBar (60, 1, 0, 1)

like the bars since the last time the 7 bar ADX value was above 60, to be less than the bars since the last

(most recent) swing low bar.

SwingLowBarCustom

This Misc function was designed to return the number of bars since the specified occurrence of a “Custom”

swing low bar using a customized (user specified) Expression to calculate the Swing Points. It will also

allow for Strength, AltMode, and Occurrence inputs. This function was only intended to be used within

mechanical system rules, Filter Criteria/Scans, and/or other custom functions.
Function:

SwingLowBarCustom (Expression, Strength, AltMode, Occurrence)

Inputs:

Expression – This input is the price or indicator function that the SwingLowBarCustom function uses to

calculate the swing points. It uses a default of the closing prices. This input is what makes this a “Custom”

function, allowing the ability to specify the price function that the function uses.

Strength – This input is the number of bars that the SwingLowBarCustom function searches within, in order

to find the specific Occurrence of a high swing.

AltMode – This input allows users to specify the order in which swing points are calculated.

0 – This will not alternate highs or lows, showing all possible swing points.

 84

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Occurrence – This input is the specific “Happening” of a low swing that the SwingLowBarCustom function

is to return the value/price for.

Example:

In this example we would like SwingLowBarCustom (StochK (14,3), 20, 0, 1) < 3

the bars since the last (most recent) swing low bar of the StochK, to be less than 3 in the last 20 bars.

SwingLowCustom

This Misc function was designed to return the price of the specified Occurrence of a “Custom” swing low.

It uses five inputs designating the price or indicator function used, the number of bars used, the Method

used, the type of AltMode used, and the specific Occurrence of the low swing that it is looking for. This

SwingLowCustom function was intended for use within mechanical system rules, as well as Filter

Criteria/Scans. It is most commonly used when referencing the price of a certain occurrence of a

SwingLow.

Function:

SwingLowCustom (Expression, Strength, AltMode, Occurrence)

Inputs:

Expression – This input is the price function (or value) that the SwingLowCustom function uses to calculate

the swing points. It uses a default of the closing prices. This input is what makes this a “Custom” function,

allowing the ability to specify the price function (or value) that the function uses.

Strength – This input is the number of bars that the SwingLowCustom function searches within in order to

find the specific Occurrence of a low swing.

AltMode – This input allows users to specify the order in which swing points are calculated.

0 – This will not alternate highs or lows, showing all possible swing points.

 85

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Occurrence – This input is the specific “Happening” of a low swing that the SwingLowCustom function is

to return the value/price for.

Example:

In this example we would StochK (14,3) < SwingLowCustom (StochK (14,3), 20, 0, 1)

like the current StochK value to be lessr than the last swing low value of the StochK in the last 20 bars of

data.

SwingPointsCustom

This Misc function was designed to chart Swing Points allowing the user to attach the SwingPointsCustom

to another price or indicator function, such as the open, high, low, or close. It also allows the Expression to

be expressed as an indicator, such as ADX, or a Moving Average. This function is most commonly used

when creating custom swing point functions to be plotted on a chart.

Function:

SwingPointsCustom (Expression, Strength, AltMode)

Inputs:

Expression – This input is the price function (or value) that the SwingPointsCustom function uses to

calculate the swing points. It uses a default of the closing prices. This input is what makes this function a

“Custom” function, allowing the ability to specify the price (or value) that the SwingPoints use.

Strength – This input is the number of bars that the SwingPointsCustom function uses.

AltMode – This input allows users to specify the order in which the swing points are calculated.

0 – This will not alternate highs or lows, showing all possible swing points.

1 – This inserts alternates between two like swings. IE. If there are two high swing points in a row, this

AltMode inserts a low swing point at the lowest low between them.

2 – This will force the confirmation of opposite swings. IE If there is a high swing point, this AltMode will

ignore any additional high swings until after the next low swing

Example:

In this example we would SwingPointsCustom (UltimateOsc (7, 14, 28), 6, 0)

like to create a swing points indicator that plots all possible swing points on the Ultimate Oscillator

indicator (instead of swing points attached to the price).

 86

Thursday

This Calendar function was designed to return True if the current price bar is a Thursday. Otherwise this

function will return False. This function was intended for use within mechanical system rules, Filter

Criteria/Scans, and/or custom functions.

Function:

Thursday

Inputs:

None

Example:

In this example we would like Thursday and Close > MovingAvg (Close, 18)

to highlight all daily bars that are Thursdays and the current bars close closed above the 18 bar moving

average.

TickMove

This Price function was designed to return the actual tick move of a security. For example, for T-Bonds

this value is .03125. This function was intended for use within mechanical system rules, as well as custom

functions.

Function:

TickMove

Inputs:

 87

None

Example:

In this example we need IF True to exit a long

position at a price of our Entry price

THEN Long Exit plus 3 tick moves.

 At Entry Price + TickMove * 3

TickValue

This Price function was designed to return the actual dollar value of a TickMove for a given security. For

example, for T-Bonds this value is $31.25 for 1 TickMove (.03125). This function was intended for use

within mechanical system rules, as well as custom functions.

Function:

TickValue

Inputs:

None

Example:

In this example we need IF True to exit a long

position at a price of our Entry price

THEN Long Exit plus a tick value.

 At Entry Price + TickValue

TickVolume

This Price function was designed to return the number of ticks or trades in a market for the current bar. It

is calculated by adding the TicksUp to the TicksDown. To receive these values you must be a subscriber to

Genesis Intraday data. This function was only intended for use within mechanical system rules.
Function:

TickVolume

 88

Inputs:

None

Example:

In this example we would like IF TickVolume > TickVolume.2

the tick volume today to be greater than it was 2 days ago.

TicksDown

This Price function was designed to return the number of ticks or trades that traded lower than the last trade

at a different price. To receive these values you must be a subscriber to Genesis Intraday data. This

function was intended for use within mechanical system rules, Filter Criteria/Scans, and/or custom

functions.

Function:

TicksDown

Inputs:

None

Example:

In this example we would TicksDown. FirstBarOfDay (0) < TicksDown. FirstBarOfDay (1)

like the current amount of down ticks to be less than the down ticks of the first bar of yesterday’s data.

TicksUp

This Price function was designed to return the number of ticks or trades that traded higher than the last

trade at a different price. To receive these values you must be a subscriber to Genesis Intraday data. This

function was intended for use within mechanical system rules, Filter Criteria/Scans, and/or custom

functions.

Function:

TicksUp

Inputs:

None

 89

Example:

In this example we would TicksUp. FirstBarOfDay (0) < TicksUp. FirstBarOfDay (1)

like the current amount of up ticks to be more than the up ticks of the first bar of yesterday’s data.

Time

This Calendar function was designed to return the time of the current bar as a number in the format of

“HHMM” (Hour Hour Minute Minute). For example, 930 for 9:30 a.m., 1615 for 4:15 p.m. This function

will also return True/False for a highlight bar if it is written correctly (e.g. Time = 930).

Function:

Time

Inputs:

None

Example:

In this example, we would Time = 0930

like to highlight all of the 9:30 a.m bars.

TimeToMinutes

This Calendar function was designed to convert “Time” (HHMM) to minutes since midnight. This function

may not necessarily be used by the common user, but for some, it may be useful. It was only intended for

use within mechanical system rules, and some Filter Criteria/Scans.

Function:

TimeToMinutes (HHMM)

Inputs:

HHMM – This input is the actual time (expressed in 24 hour format) to be converted to the amount of

minutes since midnight. For example, 930 (HHMM) = 570 (Minutes since midnight).

 90

TradedToday

This Indicator function was designed to return True if a trade has already been entered on the same day as

the next bar. Otherwise this function will return False. This function was intended for use within

mechanical system rules only.

Function:

TradedToday

Inputs:

None

Example:

In this example we would like IF NOT TradedToday part

of our condition to state that

there has not been a trade filled OR today.

 IF TradedToday = False

TradingDayOfMonth

This Calendar function was designed to return the trading day of the month as a number for the current bar.

For example if today is 03/03/03, then this function will return 1, because the 3rd of March of 2003 is the

very first trading day of the month (and it is not a holiday). This function was intended for use within

mechanical system rules, as well as Filter Criteria/Scans and custom functions. You will see in the

example below that we have “=1” after the function. This forces the confirmation (True/False) of our

condition. If the TradingDayOfMonth does not equal 1, then our condition is false, canceling any trade

signal.

Function:

TradingDayOfMonth

 91

Inputs:

None

Example:

In this example we would like IF TradingDayOfMonth = 1

part of our condition to state that the current bar is the first trading

THEN Exit Long day of the month.

 At Market

TradingDayOfWeek

This Calendar function was designed to return the trading day of the week as a number for the current bar.

For example if today is Monday (and it is not a holiday), this function will return 1. This function was

intended for use within mechanical system rules, as well as Filter Criteria/Scans and custom functions.

You will see in the example below that we have “=1” after the function. This forces the confirmation

(True/False) of our condition. If the TradingDayOfWeek does not equal 1, then our condition is false,

canceling any trade signal.

Function:

TradingDayOfWeek

Inputs:

None

Example:

In this example we would like IF TradingDayOfWeek = 1

part of our condition to state that the current bar is the first trading

THEN Exit Long day of the week.

 At Market

TradingDayOfYear

This Calendar function was designed to return the trading day of the year as a number for the current bar.

For example if today is 05/30/03 (and it is not a holiday), this function will return 103. This function was

intended for use within mechanical system rules, as well as Filter Criteria/Scans and custom functions.

You will see in the example below that we have “>=103” after the function. This forces the confirmation

(True/False) of our condition. If the TradingDayOfYear is not greater than or equal to 103 trading day of

the year, then our condition is false, canceling any trade signal.

Function:

TradingDayOfYear

 92

Inputs:

None

Example:

In this example we would like IF TradingDayOfYear >= 103

part of our condition to state that the current bar is greater than or equal

THEN Enter Long to the 103rd trading day of the year.

 At Market

TradingDaysAfterHoliday

This Calendar function was designed to return the number of trading days since the last holiday (as a

number) to the current bar. This function was intended for use within mechanical system rules, as well as

Filter Criteria/Scans and custom functions. You will see in the example below that we have “=1” after the

function. This forces the confirmation (True/False) of our condition. If the TradingDayAfterHoliday is not

equal to 1, then our condition is false, canceling any trade signal for the next bar.

Function:

TradingDaysAfterHoliday

Inputs:

None

Example:

In this example we would like IF TradingDaysAfterHoliday = 1 to

place a trade on the second

trading day after a holiday. THEN Enter Long

 At Market

TradingDaysLeftBeforeHoliday

This Calendar function was designed to return the number of trading days from the current bar to the very

next market holiday. This function was intended for use within mechanical system rules, as well as Filter

Criteria/Scans and custom functions. You will see in the example below that we have “=2” after the

function. This forces the confirmation (True/False) of our condition. If the TradingDayLeftBeforeHoliday

is not equal to 2, then our condition is false, canceling any trade signal for the next bar.

Function:

 93

TradingDaysLeftBeforeHoliday

Inputs:

None

Example:

In this example we would like IF TradingLeftBeforeHoliday = 2 to

place a trade on the day

before a holiday. THEN Exit Long

 At Market

TradingDaysLeftInMonth

This function was designed to return the number of trading days left in the current month from the current

bar forward. This function was intended for use within mechanical system rules, as well as Filter

Criteria/Scans and custom functions. You will see in the example below that we have “>=10” after the

function. This forces the confirmation (True/False) of our condition. If the TradingDaysLeftInMonth is

not greater than or equal to 10, then our condition is false, canceling any trade signal for the next bar.

Function:

TradingDaysLeftInMonth

Inputs:

None

Example:

In this example we would like IF TradingDaysLeftInMonth >= 10

to place a trade if there are 10

trading days or more left in the THEN Exit Long current

month.

 At Market

True

This Misc function was designed to always return True. It is most commonly used when a condition must

be true. This function is one of the functions that was intended for use within mechanical system rules,

Filter Criteria/Scans, and custom functions.

 94

Function:

True

Inputs:

None

Example:

In this example we would like OutsideBar.1 = True And Close > Close.2

the previous bar to equal an outside bar, and the current close to be greater than the close 2 bars

ago.

TrueInsideBar

This Indicator function was designed to return True if the current bar is in fact a bar that did not trade

higher or lower than the preceding bars true high and true low, and whose range is less than or equal to the

preceding bar. This function was intended for use within mechanical system rules, as well as Filter

Criteria/Scans and custom functions.

Function:

TrueInsideBar

Inputs:

None

Example:

In this example we would like IF BarSince (TrueInsideBar, 1, 25) <= 2

to enter a trade when the most recent True Inside Bar was less

THEN Long Entry than or equal to 2 bars ago.

 At Market

TrueOutsideBar

 95

This Indicator function was designed to return True if the current bar is in fact a bar that traded both higher

and lower than the preceding bars true high and true low. This function was intended for use within

mechanical system rules, as well as Filter Criteria/Scans and custom functions.

Function:

TrueOutsideBar

Inputs:

None

Example:

In this example we would like IF BarSince (TrueOutsideBar, 1, 25) <= 5

to enter a trade when the most recent True Outside Bar was less

THEN Long Entry than or equal to 5 bars ago.

 At Market

Tuesday

This Calendar function was designed to return True if the current price bar is a Tuesday. Otherwise this

function will return False. This function was intended for use within mechanical system rules, Filter

Criteria/Scans, and/or custom functions.

Function:

Tuesday

Inputs:

None

Example:

In this example we would like Tuesday And InsideBar

to highlight all bars that are tuesdays and are also inside bars.

 96

UpRange

This Indicator function was designed to return True if a bar is an up range bar (higher high, and higher low

than the previous bar). Otherwise this indicator function will return False. This function was intended for

use within mechanical system rules, Filter Criteria/Scans, and/or custom functions.

Function:

UpRange

Inputs:

None

Example:

In this example we would like Thursday And UpRange

to highlight all bars that are Thursdays, and are also UpRange bars.

VolatilityLongStop

This Indicator function was designed to set stop prices, according to Wells Wilders formula, when entered

into a long position. It is calculated by using the Average True Range of 7 bars multiplied by constant (K).

Please refer to Wells Wilders book “New Concepts in Technical Trading Systems”, for more information

on his Volatility indicators.

Function:

VolatilityLongStop (K)

Inputs:

K – This input is the constant value that the Average True Range is multiplied by in the Volatility Stop

indicators. This value can be changed when using this VolatilityLongStop indicator, by changing the (K)

value in the function, once it is referenced within a system rule, or when creating a custom function.

Example:

 97

In this example we would like VolatilityLongStop (5)

to create a custom Volatility long stop function that uses a (K) value of 5 rather than

the standard (K) value of 3.

VolatilityShortStop

This Indicator function was designed to set stop prices, according to Wells Wilders formula, when entered

into a short position. It is calculated by using the Average True Range of 7 bars multiplied by constant (K).

Please refer to Wells Wilders book “New Concepts in Technical Trading Systems”, for more information

on his Volatility indicators.

Function:

VolatilityShortStop (K)

Inputs:

None

Example:

In this example we would like VolatilityLongStop (5)

to create a custom Volatility short stop function that uses a (K) value of 7 rather than

the standard (K) value of 3.

Wednesday

This Calendar function was designed to return True if the current price bar is a Wednesday. Otherwise this

function will return False. This function was intended for use within mechanical system rules, as well as

Filter Criteria/Scans and/or custom functions.

Function: Wednesday

Inputs:

None

Example:

In this example, we would like Wednesday And InsideBar to highlight all bars that are

Wednesday and are also inside bars.

 98

WeekDayOccurrence

This Calendar function was designed to return True if the current bar is the Nth (specified in the inputs)

Occurrence of a weekday (also specified in the inputs) during the month. For example,

WeekDayOccurrence (“Tuesday”, 2) will return True if the current bar is in fact the second Tuesday of the

month. If the Occurrence input is set to a negative number (such as –1) then it will check from the end of

the month, returning True (when using –1) if it is the last WeekDayName of the month.

Function:

WeekDayOccurrence (WeekDayName, Occurrence)

Inputs:

WeekDayName – This is the weekday name the WeekDayOccurrence function is searching for. *Please

note that the weekday name must be enclosed by quotation marks (Please see example below).

Occurrence – This input is the specific occurrence of the weekday you are looking for. For example: If

this input is set to “2”, then the WeekDayOccurrence function will look for the 2nd “WeekDayName” of the

month. If this input is negative, the function will look from the end of the current month back. In the

example below we are looking for the last Tuesday of the month., so we are using “-1” as the Occurrence.

Example:

In this example, we would like WeekDayOccurrence (“Tuesday”, -1) to highlight all bars that

are the last Tuesday of each month.

XOR

This Misc function was designed to return True if exactly one of the two conditions is true. This function is

used when only one of the two conditions desired needs to be True, but not both. It is intended for use

within mechanical system rules, Filter Criteria/Scans, and/or custom functions.

Function:

XOR (Condition 1, Condition 2)

Inputs:

Condition 1 – This input is the first of two conditions, where one of the two must be true. This input can be

any thing from, ADX (7) > 60, to Open.1 > Open.10. Remember that this XOR function is searching for

the Condition to equal True, so these Condition 1 & 2 inputs must return true or false.

Condition 2 - This input is the second of the two conditions, whereas one of the two must be true. This

input can be any thing from, ADX (7) > 60, to Open.1 > Open.10. Remember that this XOR function is

searching for Conditions to equal True, so the Condition 1 & 2 inputs must return true or false.

Example:

In this example we are would like XOR (ADX (7) >= 60, ADX (7) <= 20) either the 7 bar ADX

value to be greater than or equal to 60, or the 7 bar ADX value to be less than or equal to 20.

 99

Year

This Calendar function was designed to return the numeric year as a four digit number value. For example,

Year = 2003. It was only intended for use in either Criteria/Scans or mechanical system rules. You will

see in the example below, that we have taken a number return function (Year) and turned it into a

True/False conditional by adding the operator “=”, followed by the four digit year we wish the current bar

to be in.

Function:

Year

Inputs:

None

Example:

In this example we would like Year = 1999 the most recent bar

to be in the year 1999.

98

